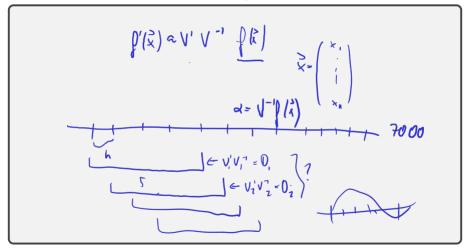
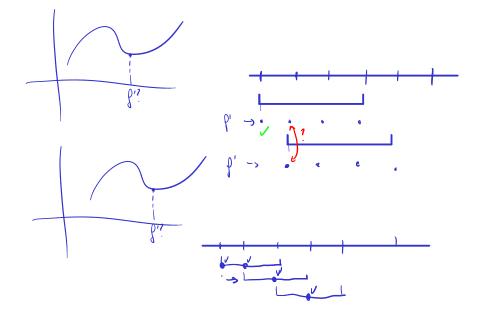
Numerical Differentiation: How?

CSSS5

How can we take derivatives numerically?



Demo: Taking Derivatives with Vandermonde Matrices [cleared]

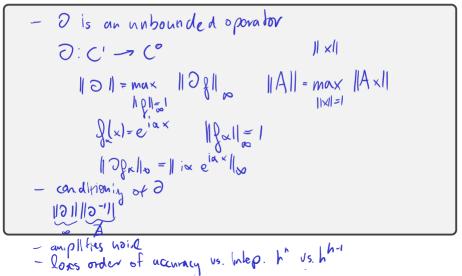


Finite Differences Numerically

Demo: Finite Differences [cleared] Demo: Finite Differences vs Noise [cleared] Demo: Floating point vs Finite Differences [cleared]

Taking Derivatives Numerically

Why shouldn't you take derivatives numerically?



39

 $\Delta n = \beta = \partial_{n} n = g$

N ~ NtC

Differencing Order of Accuracy Using Taylor

Find the order of accuracy of the finite difference formula $f'(x) \approx [f(x+h) - f(x-h)]/2h$.

Outline

Introduction

Notes Notes (unfilled, with empty boxes) About the Class Classification of PDEs Preliminaries: Differencing Interpolation Error Estimates (reference)

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems

Truncation Error in Interpolation

If f is n times continuously differentiable on a closed interval I and $p_{n-1}(x)$ is a polynomial of degree at most n that interpolates f at n distinct points $\{x_i\}$ (i = 1, ..., n) in that interval, then for each x in the interval there exists ξ in that interval such that

$$f(x) - p_{n-1}(x) = \frac{f^{(n)}(\xi)}{n!}(x-x_1)(x-x_2)\cdots(x-x_n).$$



Truncation Error in Interpolation: cont'd.

$$Y_x(t) = R(t) - \frac{R(x)}{W(x)}W(t)$$
 where $W(t) = \prod_{i=1}^n (t - x_i)$

Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev interpolation?

Error Result: Simplified Form

Boil the error result down to a simpler form.

Demo: Interpolation Error [cleared]

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems 1D Advection Stability and Convergence

Von Neumann Stability Dispersion and Dissipation A Glimpse of Parabolic PDEs

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems 1D Advection

Stability and Convergence Von Neumann Stability Dispersion and Dissipation A Glimpse of Parabolic PDEs

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems

1D Advection Equation and Characteristics

$$u_{t} + au_{x} = 0, \quad u(0, x) = g(x) \quad (x \in \mathbb{R})$$
Solution?
$$(\lambda_{\xi} + \int (u)_{x} = 0)$$

$$(haracleristic curve:)_{0}f_{inc} \times (\lambda) \quad so \quad fhat$$

$$u(x(1)_{i}t) = u(x(0), 0)$$

$$Suppose \quad x \quad is \quad g \quad ivum \quad by \quad fhe \quad |V|^{2}$$

$$\int dx = \int (u(x(1t)_{i}t) - (u(x(1t)_{i}t)) - (u(x(1t)_{i}t)$$

Solving Advection with Characteristics

$$u_t + au_x = 0, \quad u(0, x) = g(x) \qquad (x \in \mathbb{R})$$

Find the characteristic curve for advection.

Generalize this to a solution formula.

Does the solution formula admit solutions that aren't obviously allowed by the $\mathsf{PDE}?$