1D Advection Equation and Characteristics

Solving Advection with Characteristics

$$
u_{t}+a u_{x}=0, \quad u(0, x)=g(x) \quad(x \in \mathbb{R})
$$

Find the characteristic curve for advection.

$$
x(t)=x_{0}+a l
$$

Generalize this to a solution formula.

$$
u(x, d)=g(x-d \mid) \quad f^{\prime}(u)=a=a d v \text {. speed }
$$

Does the solution formula admit solutions that aren't obviously allowed by the PDE?
sol. Found a admits non-smooth solutions
Le egg. solutions having jumps
\rightarrow beer: generalize / weaker notion of "derisatic"

Finite Difference for Hyperbolic: Idea

$$
\left\{\left(x_{k}, t_{\ell}\right): x_{k}=k h_{x}, t_{\ell}=\ell h_{t}\right\}
$$

If $u(x, t)$ is the exact solution, want

$$
u_{t}+a u_{x}=0 \quad u_{k, \ell} \approx u\left(x_{k}, t_{\ell}\right)
$$

Condition at each grid point?

- choose a derivative stencil for each occurrig deriative
- phis in to PDE
- get giant systemof equs.

What are explicit/implicit schemes?
assumption: step fud. in tine

- next time lovel found by
- sigten of epa (imply.) /-for mile (expel.))

Crank-Nicolson

Write out Crank-Ničolson:

Crank-Nicolson

$$
\begin{aligned}
& \frac{u_{k, l+1}-u_{n, l}}{h_{t}} \\
& +\frac{n}{2}\left[\frac{u_{k+1}, l-u_{k-1, l}}{2 h x}+\frac{u_{k+1}, l_{1}-u_{k-1, l+1}}{2 h x}\right]=0
\end{aligned}
$$

Wonld live: two-lerel schencs only.

Lax-Wendroff
What's the core idea behind Lax-Wendroff?

$$
\begin{aligned}
& u_{t}+a u_{x}=0 \quad \text { - Write a Tonylor expni in time } \\
& \rightarrow u_{t}=-a u_{x} \quad \text { - Use the PDE to replace } \partial_{t} \text { with } \partial_{x} \\
& \text { - Discrel ito space } \partial<\text { as before } \\
& \text { Write out Lax-Wendroff. } \\
& \bullet \bullet \cdot x \\
& \text { Lax- } \\
& \text { Wendroff } \\
& u_{t}=-a u_{x} \mid u_{t t}=\left(-a u_{x}\right)_{t}=-a\left(u_{t}\right)_{x}=a^{2} u_{x x} \\
& u_{k, l+1}-u_{k, l} \approx h_{t} u_{t}\left(x_{k}, \epsilon_{l}\right)+\frac{h_{t}^{2}}{2} u_{t t}\left(x_{k}, t_{e}\right) \\
& =-h_{t} a u_{x}\left(x_{x}, t_{e}\right)+\frac{a^{2} h_{t}^{2}}{2} u_{x x}\left(x_{k}, t_{e}\right) \\
& \approx-h_{t} a \frac{n_{k+1, \ell}-n_{k-1} \ell}{2 h_{x}} \frac{+a^{2} h_{k}^{2}}{2} \frac{u_{k+1, \ell}-2 n_{k, \ell}+n_{k-1}, \ell}{h_{x}^{2}} .
\end{aligned}
$$

Exploring Advection Schemes

Demo: Methods for 1D Advection [cleared]

- Which of the schemes "work"?
- Any restrictions worth noting?

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

1D Advection
Stability and Convergence
Von Neumann Stability
Dispersion and Dissipation
A Glimpse of Parabolic PDEs

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems

A Matrix View of Two-Level Stencil Schemes
Define
Define

$$
\vec{v}_{\ell}=\boldsymbol{v}_{\ell}=\left[\begin{array}{c}
u_{1, \ell} \\
\vdots \\
u_{N_{x}, \ell}
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{N_{t}}
\end{array}\right] . \quad \boldsymbol{u}_{\ell}=\left[\begin{array}{c}
u\left(x_{1}, t_{\ell}\right) \\
\vdots \\
u\left(x_{N_{x}}, t_{\ell}\right)
\end{array}\right] \quad \boldsymbol{u}=\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{N_{t}}
\end{array}\right] .
$$

Definition (Two-Level Finite Difference Scheme)
A finite difference scheme that can be written as

$$
P_{h} \vec{v}_{e+1}=Q_{n} \vec{v}_{l}+n_{t} \vec{b}_{e}
$$

is called a two-level linear finite difference scheme.

- Mostly will (tacitly) assume $\vec{b}_{e}=\overrightarrow{0}$. (i.e. no sire tens)
- P_{n}, Q_{h} may depend on h_{x}, h_{t}
- miljur also consider ittinine (spatial) vectors.

Rewriting Schemes in Matrix Form (1/2)

$$
P_{h} \boldsymbol{v}_{\ell+1}=Q_{h} \boldsymbol{v}_{\ell}+h_{t} \boldsymbol{b}_{\ell}
$$

Find P_{h} and Q_{h} for ETCS:

