A Matrix View of Two-Level Stencil Schemes - howl una due Febll Numerical solution vectors:

True solution vectors:

$$
\vec{v}_{\ell}=\overrightarrow{\boldsymbol{v}_{\ell}}=\left[\begin{array}{c}
u_{1, \ell} \\
\vdots \\
u_{N_{x}, \ell}
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{N_{t}}
\end{array}\right] . \quad \boldsymbol{u}_{\ell}=\left[\begin{array}{c}
u\left(x_{1}, t_{\ell}\right) \\
\vdots \\
u\left(x_{N_{x}}, t_{\ell}\right)
\end{array}\right] \quad \boldsymbol{u}=\left[\begin{array}{c}
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{N_{t}}
\end{array}\right] \text {. }
$$

Definition (Two-Level Finite Difference Scheme)
A finite difference scheme that can be written as

$$
P_{n} \vec{v}_{e_{1}}=Q_{n} \vec{v}_{e}+h_{t} B_{e}
$$

is called a two-level linear finite difference scheme.

$$
\begin{aligned}
& -M_{00} H l_{y} \vec{b}_{l}>\overrightarrow{0} \\
& -P_{h}\left(h_{x}, h_{t}\right) \quad Q_{h}\left(h_{x}, h_{t}\right)
\end{aligned}
$$

Rewriting Schemes in Matrix Form (1/2)

$$
P_{h} \boldsymbol{v}_{\ell+1}=Q_{h} \boldsymbol{v}_{\ell}+h_{t} \boldsymbol{b}_{\ell}
$$

Find P_{h} and Q_{h} for ETCS:

$$
\begin{gathered}
\operatorname{ETCS}: \frac{u_{k, l+1}-u_{k, l}}{n_{t}}+a \frac{u_{k-1, \ell}-u_{k-1, \ell}}{2 n_{x}}=0 \\
u_{k, l+1}=u_{k, l}+\frac{d h_{t}}{2 n_{x}}\left(u_{k-1, \ell}-u_{k-1, \ell}\right) \\
P_{h}=I / Q_{h}=\operatorname{tridlog}\left(\frac{a h_{t}}{2 n_{x}}, 1,-\frac{d h_{t}}{2 n_{x}}\right)
\end{gathered}
$$

Rewriting Schemes in Matrix Form (2/2)

Find P_{h} and Q_{h} for Crank-Nicolson:

$$
\begin{aligned}
& P_{h}=\operatorname{rridiag}\left(\frac{a h_{t}}{4 h_{x}}, 1, \frac{a h_{t}}{4 h x}\right) \\
& Q_{h}=\text { tridiag }\left(\frac{a h_{t}}{4 h_{x}}, 1, \frac{-a h_{t}}{4 h_{x}}\right)
\end{aligned}
$$

Truncation Error

Definition (Truncation Error)

The local truncation error $\tau_{k_{1} e}$ is the e prov that remains wher the FO methol'is applied to an exact sol.

Demo: Truncation Error Analysis via sympy [cleared]

Error and Error Propagation

$$
P_{n} \vec{v}_{l+1}=Q_{n} \vec{v}_{l}
$$

Express definition of truncation error in our two-level framework:

$$
P_{h} \vec{u}_{l+1}=Q_{h} \vec{u}_{l}+\underset{\underbrace{}_{l}}{\text {truc.eno }^{-} h_{t}}
$$

Define $\boldsymbol{e}_{\ell}=\boldsymbol{u}_{\ell}-\boldsymbol{v}_{\ell}$. Understand the error as accumulation of truncation error:

$$
\begin{gathered}
\vec{e}_{l}=\vec{O} \\
P_{h} \vec{e}_{l+1}=Q_{h} \vec{e}_{e}+\vec{\tau}_{l} h_{t} \\
\vec{e}_{l+1}=P_{h}^{-1} Q_{l} \vec{e}_{e}+P_{n}^{1} \vec{\tau}_{l} h_{t}
\end{gathered}
$$

Discrete and Continuous Norms
To measure properties of numerical solutions we need norms. Define a discrete L^{∞} norm.

$$
\| e h_{\infty}=\max _{k, e}\left|e_{n, e}\right|
$$

Define a discrete L^{2} norm.

$$
v \in \mathbb{R}^{h}
$$

$$
\left[\begin{array}{l}
\|\vec{e}\|_{2}=\sqrt{\sum_{k_{1}} n_{x} h_{+} e_{k_{1} l}^{2}} \\
\|\vec{e}\|
\end{array}\right.
$$

$$
\underbrace{\|v\|_{2}=\sqrt{\sum_{j=1}^{n} v_{i}^{2}}}_{l^{2}}
$$

$$
\|f\|=\sqrt{S f^{2}}
$$

- $\|_{2 / \infty}$ should not charge wildly as we consider limits $n_{\lambda}, h_{t} \rightarrow 0$

Consistency and Convergence
Assume $u,\left(\partial_{x}^{q_{x}}\right) u,\left(\partial_{t}^{q_{t}}\right) u \in L^{2}\left(\mathbb{R} \times\left[0, t^{*}\right]\right)$.
Definition (Consistency)
A two-level scheme is consistent in the L^{2}-norm with order q_{t} in time and q_{x} in space if

$$
\max _{l_{1} l h_{t} \leq t^{*}}\left\|\vec{\tau}_{l}\right\|=O\left(h_{x}^{a_{x}}+h_{t}^{q} t\right)
$$

(as $h_{x}, h_{t} \rightarrow 0$)
Definition (Convergence)
A two-level scheme is convergent in the L^{2}-norm with order q_{t} in time and q_{x} in space if

$$
\max _{e_{1} l h_{t} \leqslant t^{*}}\left\|e_{x}\right\|=O\left(h_{x}^{a_{x}}+h_{t}^{q_{t}}\right)
$$

Analyzing ETFS (1/2)

$$
\frac{u_{k, \ell+1}-u_{k, \ell}}{h_{t}}+a \frac{u_{k+1, \ell}-u_{k, \ell}}{h_{x}}=0
$$

Let's understand more precisely what happens for this scheme. Assume

Analyzing ETFS (2/2)

Consider $u(x, 0)=1_{[-1,0]}(x)$. Predict solution behavior.

$$
\begin{aligned}
u_{0,0}=1 & u_{1 \ldots, 0}=0 \\
u_{0,1}=1+\lambda & u_{1, \ldots, 1}
\end{aligned}=0 \quad\left(1+\frac{x}{h}\right)^{n} \rightarrow
$$

Demo: Methods for 1D Advection [cleared] (Revisit ETFS)

Stability

$$
P_{h} \boldsymbol{v}_{\ell+1}=Q_{h} \boldsymbol{v}_{\ell}
$$

Write down a matrix product to bring \boldsymbol{v}_{0} to \boldsymbol{v}_{ℓ} :

$$
\vec{V}_{l}=\left(P_{h}^{-1} Q_{h}\right)^{l} \vec{V}_{0}
$$

Definition (Stability)

A two-level scheme is stable in the L^{2}-norm if there exists a constant $c>0$ independent of h_{t} and h_{x} so that

$$
\left\|\left(P_{h}^{-1} Q_{h}\right)^{\ell} P_{h}^{-1}\right\| \leq c
$$

for all ℓ and h_{t} such that $\ell h_{t} \leq t^{*}$.

Lax Convergence Theorem
Theorem (Lax Convergence)
If a two-level FD scheme is

- consistent in the L^{2}-norm with order q_{t} in time and q_{x} in space, and
- stable in the L^{2}-norm, then
it is convergent in the L^{2}-norm with order q_{t} in time and q_{x} in space.
- Strong resulthotdi: "it and only if" Lax equiv. John. / Lax-Richt meyer than..
- "furan ental then of numerical analysis t

$$
\text { consistency + stability } \Rightarrow \text { convergence }
$$

- A related real hides for ODEs (Dahlqnist)

Lax Convergence: Proof (1/2)

Lax Convergence: Proof (2/2)

Conditions for Stability

$$
\left\|\left(P_{h}^{-1} Q_{h}\right)^{\ell} P_{h}^{-1}\right\| \leq c
$$

Give a simpler, sufficient condition:

How can we show bounds on these matrix norms?

