Rewriting Schemes in Matrix Form (1/2)

$$P_h \boldsymbol{v}_{\ell+1} = Q_h \boldsymbol{v}_\ell + h_t \boldsymbol{b}_\ell$$

Find P_h and Q_h for ETCS:

Rewriting Schemes in Matrix Form (2/2)

Find P_h and Q_h for Crank-Nicolson:

$$P_{h} = \text{triding} \left(\frac{-ah_{t}}{4h_{x}} \right) \left(\frac{-ah_{t}}{4h_{x}} \right)$$

$$Q_{h} = \text{triding} \left(\frac{-ah_{t}}{4h_{x}} \right) \left(\frac{-ah_{t}}{4h_{x}} \right)$$

.

Truncation Error

Definition (Truncation Error)

Demo: Truncation Error Analysis via sympy [cleared]

Error and Error Propagation

Express definition of truncation error in our two-level framework:

Define $\boldsymbol{e}_{\ell} = \boldsymbol{u}_{\ell} - \boldsymbol{v}_{\ell}$. Understand the error as accumulation of truncation error:

Discrete and Continuous Norms

To measure properties of numerical solutions we need norms. Define a discrete L^{∞} norm.

61

Consistency and Convergence Assume $u, (\partial_x^{q_x})u, (\partial_t^{q_t})u \in L^2(\mathbb{R} \times [0, t^*]).$

Definition (Consistency)

A two-level scheme is consistent in the L^2 -norm with order q_t in time and q_x in space if

$$\begin{array}{l} \max_{\substack{k \in t^* \\ k_1 \in t^* \\ k_2 \in t^* \\ k_1 \in t^* \\ k_2 \in t^* \\ k_1 \in t^* \\ k_2 \in t^$$

Definition (Convergence)

A two-level scheme is convergent in the L^2 -norm with order q_t in time and q_x in space if

$$\begin{array}{c} \max_{\substack{\ell \neq \ell}} \|e_{\ell}\| = O(h_{\chi}^{q_{\chi}} + h_{\ell}^{q_{\ell}}) \\ e_{\ell} h_{\ell} \leq \ell^{\prime} \\ (as h_{\chi}, h_{\ell} \rightarrow 0) \end{array}$$

Analyzing ETFS (1/2)

$$\frac{u_{k,\ell+1} - u_{k,\ell}}{h_t} + a \frac{u_{k+1,\ell} - u_{k,\ell}}{h_x} = 0$$

Let's understand more precisely what happens for this scheme. Assume a > 0 $R_{a,l+1} = N_{x_{1}l} - \frac{a}{h_{l}} \left(u_{h+1} - u_{h_{1}} \right) = (1+\lambda) u_{h_{1}l} - \lambda u_{h_{1}} u_{h_{1}}$

Demo: Methods for 1D Advection [cleared] (Revisit ETFS)

Stability

$$P_h oldsymbol{v}_{\ell+1} = Q_h oldsymbol{v}_\ell$$

Write down a matrix product to bring \boldsymbol{v}_0 to \boldsymbol{v}_ℓ :

$$\vec{V}_{a} = \left(\vec{P}_{1} \quad Q_{n} \right)^{L} \vec{V}_{0}$$

Definition (Stability)

A two-level scheme is stable in the L^2 -norm if there exists a constant c > 0 independent of h_t and h_x so that

$$\left\| (P_h^{-1}Q_h)^{\ell} P_h^{-1} \right\| \leq c$$

for all ℓ and h_t such that $\ell h_t \leq t^*$.

Lax Convergence Theorem

Theorem (Lax Convergence)

If a two-level FD scheme is

- consistent in the L²-norm with order q_t in time and q_x in space, and
- **stable** in the L²-norm, then

it is convergent in the L²-norm with order q_t in time and q_x in space.

Lax Convergence: Proof (1/2)

Lax Convergence: Proof (2/2)

$$\left(e_{\ell} \not\models h_t \sum_{m=1}^{\ell} (P_h^{-1}Q_h)^{\ell-m} P_h^{-1} \right)_{m-1}.$$

Conditions for Stability

$$\left| (P_h^{-1}Q_h)^{\ell} P_h^{-1} \right\| \leq c$$

Give a simpler, sufficient condition:

How can we show bounds on these matrix norms?