Heat Equation
Heat equation $(D>0)$:
$-H W Z$

- Office lars: 4.5 today
- Project

$$
\begin{aligned}
u_{t} & =D u_{x x},=f \quad(x, t) \in \mathbb{R} \times(0, \infty), \\
u(x, 0) & =g(x) \quad \stackrel{f}{x \in \mathbb{R} .}
\end{aligned}
$$

Fundamental solution $(g(x)=\delta(x))$:
spreading Ganssion /'Fast Gauss drousfom
Why is this a weird model?

* speed of propagation

Schemes for the Heat Equation

$$
n_{x y} \approx \frac{u(x-h)-2 u(x)+n(x+4)}{h^{2}}
$$

Explicit Euler:

$$
\frac{u_{k, l} l+u_{k, l}}{h_{t}}-D \frac{u_{k+1, l}-2 u_{n l l}+u_{k+1, l}}{u_{\lambda}^{2}}=0
$$

Implicit Euler:

$$
\frac{u_{k, l+1}-u_{k, l}}{h_{t}}-D \frac{u_{k+1, l+1}-2 u_{n, l+1}+u_{k+1, l+1}}{n_{\lambda}^{2}}=0
$$

Von Neumann Analysis of Explicit Euler for Heat (1/2)
Let $\lambda=D h_{t} / h_{x}^{2}$.

$$
\begin{aligned}
u_{k, \ell+1} & =u_{k, \ell}+\left(\lambda\left(y_{k+1, \ell}-2 u_{k, \ell}+u_{k-1, \ell}\right) .\right. \\
P_{h} & =I \quad Q_{h}=\text { riding }(1,1-2 \lambda, \lambda)
\end{aligned}
$$

So

$$
\begin{aligned}
& \hat{p}(\varphi)=1 \\
& \hat{4}(\varphi)=\lambda e^{-i \varphi}+(1-2 \lambda)+\lambda e^{i \varphi}=1-2 \lambda+2 \lambda \cos (\varphi)
\end{aligned}
$$

Wont $|s(p)| \leq 1 \Leftrightarrow|q(p)| \leqslant 1$

$$
\begin{aligned}
& -1 \leqslant 1+2 \lambda(\cos \varphi-1) \leqslant 1 \\
& -2 \leqslant 2 \lambda(\cos \varphi-1) \leqslant 0
\end{aligned}
$$

Von Neumann Analysis of Explicit Euler for Heat (2/2)
$-2 \leq 2 \lambda(\cos (\varphi)-1) \leq 0$.
$-2 \leq(\cos \varphi-1) \leqslant 0 \quad$ if $\lambda \geqslant 0, ~ h o l l_{s}$.
$-2 \leqslant-4 \lambda \quad \Leftrightarrow \frac{1}{2} \geqslant \frac{D h_{t}}{h_{x}^{2}} \Leftrightarrow h_{t} \leq \frac{h_{x}^{2}}{2 \eta}$

Comment on the stability region found regarding speeds of propagation.

$$
\left.\begin{array}{c}
\text { - heal egg has o speed of into prop. } \\
\text { - explicit scheme propagates int o } \\
\text { one coll per step }
\end{array}\right\} \begin{gathered}
\pm \\
\text { phper } \\
\text { over } \\
\text { the } \\
\text { mismatch }
\end{gathered}
$$

Von Neumann Analysis of Implicit Euler for Heat
Let $\lambda=D h_{t} / h_{x}^{2}$.

$$
\begin{gathered}
u_{k, \ell+1}-\lambda\left(u_{k+1, \ell+1}-2 u_{k, \ell+1}+u_{k-1, \ell+1}\right)=u_{k, \ell} \\
P_{h}=\operatorname{tridig}(-\lambda, \mid+2 \lambda,-\lambda) \quad Q_{1}=\tau \\
\hat{p}(\varphi)=1+2 \lambda(1-\cos (\varphi)) \quad \hat{q}(\varphi)=1 \\
|s(\varphi)| \leq|\quad| \leqslant| |+2 \lambda(\underbrace{}_{\hat{\varepsilon}, 1-\cos \varphi)} \mid
\end{gathered}
$$

Does the type of system we need to solve for implicit+parabolic correspond to another PDE?

$$
\begin{aligned}
& u_{t}+a u_{x}=0 \quad \text { auction } \\
& \Leftrightarrow n_{t}+\hat{l} u n_{x}=\theta \\
& 10 \text { [} \frac{\partial u}{\partial t}+u \cdot \nabla_{u}+\frac{\nabla p}{\rho}=1 \quad \text { Eubse's equations } \\
& \text { (moment um eq part } \\
& \text { of that) } \\
& u_{t}+(f(u))_{x}=0 \\
& u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \\
& P(n)=\frac{u^{2}}{2} \quad f^{\prime}(n)=u \\
& _ \text {Bangor's equation }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{a}^{b} d x\left(u_{t}+f(u)_{x}=0\right. \\
& \\
& \partial_{t} \int_{a}^{b} u(t) d x+\int_{a}^{b} f(u)_{x} d x=0 \\
& \partial_{t} \int_{a}^{b} u(t) d x+f(b)-f(a)=0
\end{aligned}
$$

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws
Theory of 1D Scalar Conservation Laws
Numerical Methods for Conservation Laws Higher-Order Finite Volume
Outlook: Systems and Multiple Dimensions

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws Theory of 1D Scalar Conservation Laws
Numerical Methods for Conservation Laws Higher-Order Finite Volume
Outlook: Systems and Multiple Dimensions

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems

Conservation Laws: Recap

$$
u_{t}+f(u)_{x}=0
$$

where u is a function of x and $t \in \mathbb{R}_{0}^{+}$.
Rewrite in integral form:

$$
\partial_{t} \int_{a}^{b} u(d) d x+f(b)-f(a)=0
$$

Recall: Characteristic Curve: a function $x(t)$ so that $u(\underline{x(t)}, t)=u\left(x_{0}, 0\right)$.

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=f^{\prime}(u(x(t), t)) \\
x(0)=x_{0}
\end{array}\right.
$$

What assumption underlies all this?

> Smooth solution

Burger's Equation
Consider Burgers' Equation:

$$
\left\{\begin{array}{l}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0 \\
u(x, 0)=g(x)=\sin (x)
\end{array}\right.
$$

Interpret Burger's equation.

$$
f(n)=\frac{n^{2}}{\eta} \quad f^{\prime}(n)=n
$$

\leadsto lari breaking
Consider the characteristics at $\pi / 2$ and $3 \pi / 2$.

solution jots steeper at $\theta_{1}^{\frac{3 \pi}{2}}$ discontincions?

Weak Solutions

$$
\begin{array}{r}
\int u^{\prime} v=[u v]-\int u v^{\prime} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{a}^{b} u(x, t) \mathrm{d} x=f(u(a, t))-f(u(b, t)) \tag{8}
\end{array}
$$

Define a weak solution:

- Option 1: If \otimes ("integral tom") holds for all subintervols (a, b), then we might call a some type of solution Observe: dis continuities alloway!

$$
\begin{aligned}
- \text { Option 2! } & \int_{0}^{\infty} \int_{0}^{\infty} u_{t} \varphi+f(u)_{x} \varphi d x d t=0 \varphi E C_{0}^{1}(\mathbb{R} x[(\infty))) \\
- & \int_{0}^{\infty} \int_{-\infty}^{\infty}\left(u \varphi_{t}+f(u) \varphi_{x}\right) d x d t
\end{aligned}
$$

turns ont:

$$
-\int n^{0}(x) \varphi\left(x_{1} 0\right) d x=0
$$

Rankine-Hugoniot Condition (1/2)
Consider: Two C^{1} segments separated by a curve $x(t)$ with no regularity.

Rankine-Hugoniot Condition (2/2)

$$
(d / d t) G_{a}(x(t), t)=u(x(t), t) x^{\prime}(t)-(f(u(x(t), t))-f(u(a, t))) .
$$

