(1)

$$
\begin{aligned}
& u_{j+1, l} \rightarrow e^{i \varphi} \\
& u_{j-1, l} \rightarrow e^{-i \ell}
\end{aligned}
$$

$$
\begin{aligned}
& u_{j, l+1}= \frac{1}{2}\left(n_{j+1, l}+n_{j-1, l}\right) \\
&-\frac{\lambda}{2}\left(n_{j+1, l}-n_{j-1, l}\right) \\
& \hat{G}(\theta)= e^{i \ell}\left(\frac{1}{2}-\frac{\lambda}{2}\right)+e^{-i t}\left(\frac{1}{2}+\frac{1}{2}\right) \\
&
\end{aligned}
$$

Weak Solutions

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{a}^{b} u(x, t) \mathrm{d} x=f(u(a, t))-f(u(b, t))
$$

Define a weak solution:

Rankine-Hugoniot Condition (1/2)

Consider: Two C^{1} segments separated by a curve $x(t)$ with no regularity. ${ }^{2} x$

Rankine-Hugoniot Condition (2/2)

$$
(d / d t) G_{a}(x(t), t)=u(x(t), t) x^{\prime}(t)-(f(u(x(t), t))-f(u(a, t)))
$$

$$
x^{\prime}(f)=\frac{f\left(n^{*}\right) \cdot \rho\left(n^{-}\right)}{n^{+}-n^{-}}=\frac{[f(n)]}{[n]}
$$

Rankine-Hugoniot and Weak Solutions

Abstract

Theorem (Rankine-Hugoniot and Weak Solutions) If u is piecewise C^{1} and is discontinuous only along isoated curves, and if u satisfies the PDE when it is C^{1}, and the Rankine-Hugoniot condition holds along all discontinuous curves, then u is a weak solution of the conservation law.

