Harten's Lemma

Theorem (Harten's Lemma)

If a scheme can be written as

$$
\bar{u}_{j, \ell+1}=\bar{u}_{j, \ell}+\lambda\left(C_{j+1 / 2} \Delta_{+} \bar{u}_{j}-D_{j-1 / 2} \Delta_{-} \bar{u}_{j}\right)
$$

with $C_{j+1 / 2} \geq 0, D_{j+1 / 2} \geq 0,1-\lambda\left(C_{j+1 / 2}+D_{j+1 / 2}\right) \geq 0$ and $\lambda=h_{t} / h_{x}$, then it is TVD.

As a matter of notation, we have

$$
\begin{array}{lc}
\Delta_{+} u_{j}=u_{j+1}-u_{j}, & f(a)-f\left(b^{\prime}\right)=C \cdot(a-b) \\
\Delta_{-} u_{j}=u_{j}-u_{j-1} . & f^{\prime}(\zeta)
\end{array}
$$

We have omitted the time subscript for the time level ℓ.

Minmod Scheme
Still assume $f^{\prime}(u) \geq 0$.

$$
f_{j+1 / 2}^{*,(1)}=f(\bar{u}_{j}+\underbrace{\frac{1}{2}\left(\bar{u}_{j+1}-\bar{u}_{j}\right)}_{\tilde{u}_{j}^{(1)}})
$$

Design a 'safe' thing to use for \tilde{u} : $\quad f^{\prime \prime}\left(n^{y}, u^{-}\right)=f\left(u^{\prime}\right)$

Minmod is TVD
Show that Minmod is TVD:

$$
\begin{aligned}
& \bar{u}_{j,+1}=\bar{u}_{j, e}-\lambda\left[f\left(\bar{u}_{j}+\tilde{h}_{j}\right)-f\left(\bar{u}_{j, 1}+\hat{u}_{j-1}\right)\right] \\
& =\bar{u}_{j}-\lambda\left[-D_{j-\frac{1}{2}} A_{-} \bar{u}_{j}\right] \\
& D_{j-\frac{1}{2}}=\frac{f\left(\bar{u}_{j}+\tilde{u}_{j}\right)-f\left(\bar{u}_{j-1}+\hat{u}_{j-1}\right)}{\bar{u}_{j}-\bar{u}_{j-1}}=f^{\prime}(\xi) \frac{\left.\bar{u}_{j}-\bar{u}_{j-1}+\tilde{u}_{j}\right) \tilde{u}_{j-1}}{\bar{u}_{j}-\bar{u}_{j-1}} \\
& =\underbrace{\rho^{\prime}(\xi)}_{\substack{\geqslant 0 \\
\text { cassumphin }}}\left[1+\frac{\tilde{u}_{i}}{\tilde{u}_{j}-\tilde{u}_{j-1}}-\frac{\tilde{u}_{j-1}}{0 \leq \frac{1}{2}}\right] \geqslant \bar{u}_{j-1}-\tilde{u}_{j-1}] \geqslant 0
\end{aligned}
$$

Minmod: CFL restriction?

Derive a time step restriction for Minmod.

What about Time Integration?

$$
\begin{aligned}
& \text { Sistraigls } \\
& \text { SSP presenting } \operatorname{SSPR}(2,2)
\end{aligned}
$$

$$
u^{(1)}=u_{\ell}+h_{t} L\left(u_{\ell}\right), \quad u_{\ell+1}=\frac{u_{\ell}}{2}+\frac{1}{2}\left(u^{(1)}+h_{t} L\left(u^{(1)}\right)\right) .
$$

Above: A version of RK2 with L the ODE RHS. Will this cause wrinkles? $\alpha \in[0,1]$
TV is a cover funchonali $\operatorname{TV}(\alpha \vec{n}+(1-0) \vec{v}) \leqslant \alpha \operatorname{TV}(\vec{u})+(1-\alpha)+v(\vec{v})$

$$
\begin{aligned}
\operatorname{TV}\left(n_{l+1}\right) & =\operatorname{TV}\left(\frac{u_{l}}{2}+\frac{1}{2}\left(u^{(1)}+h_{t} L\left(u^{(1)}\right)\right)\right) \\
& \leq \frac{1}{2} T V\left(n_{l}\right)+\frac{1}{2} T V\left(u^{(1)}+h_{t} C\left(u^{(1)}\right)\right) \\
& \leq \frac{1}{2} T V\left(n_{l} \left\lvert\,+\frac{1}{2} T V\left(u^{(1)}\right)\right.\right. \\
& \left.\left.\leq \frac{1}{2} T V \right\rvert\, n_{l}\right)+\frac{1}{2} T V\left(n_{l}\right) \\
& \leq T V\left(n^{l}\right)
\end{aligned}
$$

$$
u^{\prime \prime \prime}=u_{1}-\lambda\left(, u_{1}\right)
$$

Total Variation is Convex

Show: TV (\cdot) is a convex functional.

$$
\begin{aligned}
& \operatorname{Tv}(\alpha \vec{u}+(1-\alpha) \vec{v}) \\
& =\sum_{j}\left|\alpha\left(u_{j}-n_{j-1}\right)+(1-\alpha)\left(v_{j}-v_{j-1}\right)\right| \\
& \left.\leq \alpha \sum_{j}\left|u_{j}-u_{j-1}\right|+(1-\alpha) \sum_{j} \mid v_{j-} v_{j-1}\right) \\
& \in \alpha \operatorname{TV}(\vec{u})+(1-\alpha) \operatorname{TV}(\vec{v})
\end{aligned}
$$

TVD and High Order
Can TVD schemes be high order everywhere? (aside from near shocks)

High Order at Smooth Extrema

- TVB Schemes [Shu '87]

$$
\begin{aligned}
& p_{1}(x)=1 \\
& p_{2}(x)=\left(x-x_{1}\right) \\
& p_{2}(x)=\left(x-x_{1}\right)\left(x-y_{2}\right) \\
& 871
\end{aligned}
$$

- ENO [Harten/Engquist/Osher/Chakravarthy '87]
- Define $W_{j}=w\left(x_{j+1 / 2}\right)=\int_{x_{1 / 2}}^{x_{j+1 / 2}} u(\xi, t) d \xi=\underbrace{\sum_{i=1}^{j} \bar{u}_{i}}$
- Observe $u_{j+1 / 2}=w^{\prime}\left(x_{j+1 / 2}\right)$.
- Approximate by interpolation/numerical differentiation.
- Start with the linear function $p^{(1)}$ through W_{j-1} and W_{j}
- Compute divided differences on $\left(W_{j-2}, W_{j-1}, W_{j}\right)$
- Compute divided differences on $\left(W_{j-1}, W_{j}, W_{j+1}\right)$
- Use the one with the smaller magnitude (of the divided differences) to extend $p^{(1)}$ to quadratic
- (and so on, adding points on the side with the lowest magnitude of the divided differences)
- WENO [Liu/Osher/Chan '94]

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws
Theory of 1D Scalar Conservation Laws
Numerical Methods for Conservation Laws
Higher-Order Finite Volume
Outlook: Systems and Multiple Dimensions

Finite Element Methods for Elliptic Problems

Discontinuous Galerkin Methods for Hyperbolic Problems

