$$
\begin{aligned}
& \square 0
\end{aligned}
$$

Function Spaces

Consider

Converges to the step function. Problem?
Lose all one smoothness

Norms

Definition (Norm)

A norm $\|\cdot\|$ maps an element of a vector space into $[0, \infty)$. It satisfies:

- $\|x\|=0 \Leftrightarrow x=0$
- $\|\lambda x\|=|\lambda|\|x\|$
- $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)

Convergence

Definition (Convergent Sequence)
$x_{n} \rightarrow x: \Leftrightarrow\left\|x_{n}-x\right\| \rightarrow 0$ (convergence in norm)
Definition (Cauchy Sequence)
For all $\varepsilon>0$, there exists an n fou which

$$
\left\|x_{y}-x_{\mu}\right\|<\epsilon \text { for } \mu_{1} r \geqslant h \text {. }
$$

Banach Spaces

Definition (Complete/"Banach" space)

$$
\text { Cancliy } \Rightarrow \text { convergent. }
$$

What's special about Cauchy sequences?
Limits for free!

Counterexamples?

$$
\begin{aligned}
& -C^{0} \text { or } C^{1} \text { with }\|\cdot\|_{1} /\|\cdot\|_{2} \\
& -\mathbb{Q} \text { with }|\cdot|
\end{aligned}
$$

More on C^{0}
Let $\Omega \subseteq \mathbb{R}^{n}$ be open. Is $C^{0}(\Omega)$ with $\|f\|_{\infty}:=\sup _{x \in \Omega}|f(x)|$ Banach?

$$
f(x)=\frac{1}{x} \quad \Omega=(0,1) \quad\|f\|=\infty \quad \text { not allow wed. }
$$

Is $C^{0}(\bar{\Omega})$ with $\|f\|_{\infty}:=\sup _{x \in \Omega}|f(x)|$ Banach?
Assure (fir) Cauchy.

- For each $x \in \bar{\Omega}_{,}(f(x)) ; \subset \mathbb{R}$ is Candy \Rightarrow poinhwise limit. call the resit f.
 Take $\ell_{\text {mil }} m \rightarrow \infty$. If $f_{n}(x)-f(x) \mid<\varepsilon$ holds pu. and for all $f \|_{x \in \in}$, $\left\|\rho_{r}-\rho\right\|_{\infty}<\varepsilon$. Cave in $\left\|\|_{\infty}\right.$ is called "unison conn.", presences cabhanity.
C^{m} Spaces
Let $\Omega \subseteq \mathbb{R}^{n}$.
Consider a multi-index $\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right)$ and define the symbols

$$
D^{\dot{k}_{f}}=\frac{\partial^{\mid k_{1}}}{\partial_{x_{1}}^{k_{1}} \cdots \partial_{x_{n}}^{k_{n}}} f . \quad|u|=u_{1}+\ldots+k_{n}
$$

Definition (C^{m} Spaces)

$$
\begin{aligned}
& C^{m}(\Omega)=\left\{f \in C^{0}(\Omega): D^{k} f \in C^{0} \text { for all } \vec{k} \text { w| }|h|=m\right\} \\
& C^{\infty}(\Omega)=\left\{f \in C^{0}(\Omega): D^{k} f \in C^{0} \text { for all } \vec{k}\right) \\
& C_{0}^{m}(\Omega)=\left\{f \in C^{m}(\Omega): \quad\right. \text { has compact support: } \\
& \exists \Omega^{\prime} \leq \Omega: \text { clued, bad ("copoadt) } \\
& \text { so that f| } \left.\Omega \Omega^{\prime}=0\right)
\end{aligned}
$$

Let $1 \leq p<\infty$.

Definition (L^{p} Spaces)

$$
\begin{gathered}
L^{p}(\Omega):=\left\{u:(u: \mathbb{R} \rightarrow \mathbb{R}) \text { measurable, } \int_{\Omega}|u|^{p} d x<\infty\right\} \\
\|u\|_{p}:=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p} .
\end{gathered}
$$

Definition (L^{∞} Space)

$L^{\infty}(\Omega):=\{u:(u: \mathbb{R} \rightarrow \mathbb{R}),|u(x)|<\infty$ almost everywhere $\}$,
$\|u\|_{\infty}=\inf \{C:|u(x)| \leq C$ almost everywhere $\}$.
\rightarrow every whore bat asch of zeros
L^{p} Spaces: Properties

$$
\|s \hat{n}\|_{L^{\prime}(-\pi, \pi)} \leqslant\|s\|_{\infty}\|\hat{u}\|_{1}
$$

Theorem (Hölder's Inequality)
For $1 \leq p, q \leq \infty$ with $1 / p+1 / q=1$ and measurable u and v,

$$
\|u v\|_{1} \leq\|u\|_{p}\|v\|_{q}
$$

Theorem (Minkowski's Inequality (Triangle inequality in L^{p}))
For $1 \leq p \leq \infty$ and $u, v \in L^{p}(\Omega)$,

$$
\|u+v\|_{p} \leq\|u\|_{p}+\|v\|_{p}
$$

Inner Product Spaces

Let V be a vector space.

Definition (Inner Product)

An inner product is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ such that for any $f, g, h \in V$ and $\alpha \in \mathbb{R}$

$$
\begin{aligned}
\langle f, f\rangle & \geq 0, \\
\langle f, f\rangle & =0 \Leftrightarrow f=0, \\
\langle f, g\rangle & =\langle f, g\rangle, \\
\langle\alpha f+g, h\rangle & =\alpha\langle f, h\rangle+\langle g, h\rangle .
\end{aligned}
$$

Definition (Induced Norm)

$$
\|f\|=\sqrt{\langle f, f\rangle} .
$$

Hilbert Spaces
Definition (Hilbert Space)
An inner product space that is complete under the induced norm.
Let Ω be open.
Theorem (L^{2})
$L^{2}(\Omega)$ equals the closure of (set of all(limits of Cauchy sequences in) $C_{0}^{\infty}(\Omega)$ under the induced norm $\|\cdot\|_{2}$.

Theorem (Hilbert Projection (eeg. Yosida '95, Thm. III.1))
$M \subseteq V$ closed subspace of a Hilbert space V. Let $u \in V$.
There exits a unique $v \in M \quad u=v+w \quad w \in M^{\perp}$

$$
M^{\perp}=\left\{w \in V \cdot(z, w)_{p} 0 \text { for all } z \in M\right\}
$$

Weak Derivatives

Define the space $L_{\text {loc }}^{1}$ of locally integrable functions.

Definition (Weak Derivative)

$v \in L_{\text {loc }}^{1}(\Omega)$ is the weak partial derivative of $u \in L_{\text {loc }}^{1}(\Omega)$ of multi-index order \boldsymbol{k} if

In this case $D^{k} \|^{\cdot}=v$

