Weak Derivatives
Define the space $L_{\text {lac }}^{1}$ of locally integrable functions.

$$
\begin{aligned}
& \mathcal{C}_{\text {lo }}^{1}=\{n:|n: \mathbb{R} \rightarrow \mathbb{R}| \text { means sable } \\
& \left.\qquad \int|n(x) \varphi(x)| d x<\infty \text { for all } \varphi \in C_{0}^{\infty}(\Omega)\right\}
\end{aligned}
$$

Definition (Weak Derivative) $v \in L_{\text {oc }}^{1}(\Omega)$ is the weak partial derivative of $u \in L_{\text {oc }}^{1}(\Omega)$ of multi-index order \boldsymbol{k} if

Weak Derivatives: Examples (1/2)

Consider all these on the interval $[-1,1]$.

$$
4 x-4 x^{2}
$$

$$
f_{1}(x)=4(1-x) x
$$

$$
4-8 x
$$

$$
f_{2}(x)= \begin{cases}2 x & x \leq 1 / 2 \\ 2-2 x & x>1 / 2\end{cases}
$$

$$
D_{w} f_{2}=\left\{\begin{array}{cl}
2 & x \in \frac{1}{2} \\
-2 & x>\frac{1}{2}
\end{array}\right.
$$

Weak Derivatives: Examples (2/2)

$$
\begin{aligned}
& f_{3}(x)=\sqrt{\frac{1}{2}}-\sqrt{|x-1 / 2|} \\
& D_{\omega} f_{3}=\left\{\begin{array}{l}
\frac{1}{\sqrt{1 / 2} \cdot x}><\frac{1}{2} \\
-\frac{1}{2 \sqrt{x-1 / 2}} x>\frac{1}{2}
\end{array}\right.
\end{aligned}
$$

Sobolev Spaces
Let $\Omega \subset \mathbb{R}^{n}, k \in \mathbb{N}_{0}$ and $1 \leq p<\infty$.
Definition ((k, p)-Sobolev Norm/Space)

Soboler norm

$$
\|u\|_{u, p}=\sqrt[p]{\sum_{|\vec{\alpha}| \leq k}\left\|| |_{\omega}^{\alpha} u\right\|_{p}^{p}}
$$

Soboleu
semin orm

$$
|u|_{u, p}=\sqrt[p]{\left.\sum_{|\vec{\alpha}|=u}| |\right|_{u} ^{\alpha} u \|_{p}^{p}}
$$

$W^{k, p}=\left\{u: \Omega \rightarrow \mathbb{R},\|u\|_{k, \infty}<\infty\right\}$

More Sobolev Spaces
$W^{0,2}$?
c^{2}
$W^{s, 2}$?
$H^{s} \rightarrow$ Hilbert spaces $(u, v)_{H^{=}}=\sum_{|\alpha| \mid s s}\left(D_{j}^{\alpha} u_{1}, v_{v} v_{L^{2}}\right.$
$H_{0}^{1}(\Omega)$?
C louse of $C_{0}^{\infty}(\Omega)$ under $\left\|\|_{1,2}\right.$.
"zero on the boundary"

Outline

$$
u(x, t)=U_{(}(x) e^{i \omega t}
$$

Introduction

$$
\sigma_{t}^{2} n=\Delta n
$$

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws
'bad'

Finite Element Methods for Elliptic Problems
tl; dr: Functional Analysis

Back to Elliptic PDEs

Galerkin Approximation
Finite Elements: A 1D Cartoon
Finite Elements in 2D
Approximation Theory in Sobolev Spaces
Saddle Point Problems, Stokes, and Mixed FFM
Non-symmetric Bilinear Forms
Discontinuous Galerkin Methods for Hyperbolic Problems

> ngool Helm problems

An Elliptic Model Problem $\nearrow \Delta=$ div grad n
Let $\Omega \subset \mathbb{R}^{n}$ open, bounded, $f / \in H^{1}(\Omega)$.
"Poisson en"

$$
\begin{array}{rlrl}
-\nabla \cdot \nabla u+u & =f(x) & (x \in \Omega), & -\nabla \nabla) u=f \\
u(x) & =0 \quad(x \in \partial \Omega) .
\end{array}
$$

Let $V:=H_{0}^{1}(\Omega)$. Integration by parts? (Gauss's theorem applied to $a \boldsymbol{b}$):

$$
\int_{\Omega} \nabla a \cdot b+\int a \nabla \cdot \vec{b}=\int_{\Omega} \nabla \cdot(a \vec{b})=\int_{\partial \Omega} \hat{n} \cdot|a \vec{b}|
$$

Weak form?

$$
\begin{array}{ll}
\int_{a=4}^{b=\nabla_{l}} \begin{array}{l}
a-\nabla \cdot \nabla u v+\int u v
\end{array} \quad=\int f v & v \in H_{0}^{1} \\
\int_{\Omega} \nabla_{u} \cdot \nabla v-\int_{\partial \Omega} \hat{n} \cdot\left(v \nabla_{u}\right)+\int u v=\int f v \\
0
\end{array}
$$

Motivation: Bilinear Forms and Functionals

$$
\int_{\Omega}^{\partial=(u, v)} \nabla u \cdot \nabla v+\int_{\Omega} u v=\int f v . \quad U=H_{0}^{\prime}
$$

This is the weak form of the strong-form problem. The task is to find a $u \in V$ that satisfies this for all test functions $v \in V$.

Recast this in terms of bilinear forms and functionals:

$$
\begin{aligned}
a(u, v) & =(\nabla u, \nabla v)_{c^{2}}+(u, v)_{c^{2}} \\
g(v) & =(\rho, v)_{c^{2}} \\
\text { Want } u \in V: \quad a(u, v) & =g(v) \text { for } a l l v \in V
\end{aligned}
$$

Dual Spaces and Functionals $\quad \Gamma g(\alpha v+\beta \omega)-\alpha g(V)+\beta g(\omega)$

Bounded Linear Functional

Let $(V,\|\cdot\|)$ be a Banach space. A linear functional is a linear function $g: V \rightarrow \mathbb{R}$. It is bounded (\Leftrightarrow continuous) if there exists a constant C so that $|g(v)| \leq C\|v\|$ for all $v \in V$.

Dual Space

Let $(V,\|\cdot\|)$ be a Banach space. Then the dual space V^{\prime} is the space of bounded linear functionals on V.

Dual Space is Banach (cf. e.g. Trèves 1967)

V^{\prime} is a Banach space with the dual norm

$$
\|g\|_{V^{\prime}}=\sup _{v \in V \backslash\{0)} \frac{|g(v)|}{\|v\|_{V}}
$$

Functionals in the Model Problem
Is g from the model problem a bounded functional? (In what space?)

$$
\begin{aligned}
\|g\|_{V^{\prime}} & =\sup _{v \in H^{\prime}\{\{0)} \frac{\left(f_{V}\right)_{L^{2}}}{\|V\|_{H^{\prime}}} \leqslant \frac{\|p\|_{L^{\prime}}\|v\|_{L^{2}}}{\|V\|_{L^{2}}+\left\|D_{U}\right\|_{L^{2}}} \\
& \leqslant \frac{\|p\|_{L^{2}}\left\|_{v}\right\|_{L^{2}}}{\|v\|_{L^{2}}}
\end{aligned}
$$

That bound felt loose and wasteful. Can we do better?

$$
\|f\|_{H^{-1}}=\sup _{v \in H^{\prime}(\{0)} \frac{\left(f_{1} v\right)_{L^{2}}}{\|V\|_{H^{\prime}}} \quad|g| v\|\leq\| f\left\|_{H^{-1}}\right\| v \|_{H^{-1}}
$$

Riesz Representation Theorem $(1 / 3)$
Let V be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$.
Theorem (Riesz)
Let g be a bounded linear functional on V, ie. $g \in V^{\prime}$. Then there exists a unique $u \in V$ so that $g(v)=\langle u, v\rangle$ for all $v \in V$.

Let $g \in V^{\prime} \quad N(\cdot)$, "null space'
Case I: $N(g)=V$. Pick $u=0$, done.
Case: $\quad N(g) \neq U . \quad$ Let $w \in N(g)^{\perp} \backslash\{0\}, \quad g(u)=\alpha \neq 0$

$$
g\left(\frac{g(v)}{\alpha} v\right)=\frac{g(v)}{g(u)} \cdot g(\omega)=g(v)
$$

Let $v \in V$. Let $r:=v-(g(v) / \alpha) w . \quad g(z)=0 \in) z \in N(g)$.
$\Rightarrow z \perp w_{\Leftrightarrow}(z, u)=0$.

Riesz Representation Theorem: Proof $(2 / 3)$
Have $w \in N(g)^{\perp} \backslash\{0\}, \alpha=g(w) \neq 0$, ard $z:=v-(g(v) / \alpha) w \perp w$.

$$
0=(z, w)
$$

\Leftrightarrow

$$
\begin{aligned}
&\left(\frac{g(v)}{\alpha} w, w\right)=(v, w) \quad \text { For fill v } \\
& \text { Multiply by } \frac{\alpha}{(w, w)} \\
& g(v)=\frac{\alpha}{(w, w)}\left(\frac{g(v)}{\alpha} w, w\right)=(v, w) \frac{\alpha}{(w, w)}
\end{aligned}
$$

Riesz Representation Theorem: Proof $(3 / 3)$

Uniqueness of u ?

$$
\begin{aligned}
\text { Suppose } \bar{u} \quad & g(v)=(u, v)=(\bar{u}, v) \\
\Leftrightarrow & (u-\bar{u}, v)=0 \\
\Rightarrow & (u-\bar{u}, u-\bar{u})=0=\|u-\bar{u}\|^{2} \Rightarrow u=\bar{u}
\end{aligned}
$$

Back to the Model Problem

$$
\begin{aligned}
a(u, v) & =\langle\nabla u, \nabla v\rangle_{L^{2}}+\langle u, v\rangle_{L^{2}} \\
g(v) & =\langle f, v\rangle_{L^{2}} \\
a(u, v) & =g(v)
\end{aligned}
$$

Have we learned anything about the solvability of this problem?

