Back to the Model Problem

$$
\begin{aligned}
& -\Delta u+n=0 \\
a(u, v)= & \left.\langle\nabla u, \nabla v\rangle_{L^{2}}+\langle u, v\rangle_{L^{2}}=(n, v)_{H^{\prime}} \quad g^{(\alpha v)}=\alpha g \mid v\right) \\
g(v)= & \langle f, v\rangle_{L^{2}} \\
\left(u,\left.v\right|_{H^{\prime}}=a(u, v)=\right. & g(v) \quad \text { for all } v \in H_{0}^{\prime} \quad|g(v)| \leq c \cdot \|\left. v\right|^{l} \quad
\end{aligned}
$$

Have we learned anything about the solvability of this problem?
Show. g is bounded as afurctional on H^{\prime} $\stackrel{\text { RRT }}{\Rightarrow}$ There exists a $n \in H_{1}^{\prime}$ s.l. $g(u)=(n, v)_{H_{0}^{\prime}}=a(n, v)$ \Rightarrow Existence and uniqueness of n.

Poisson
Let $\Omega \subset \mathbb{R}^{n}$ open, bounded, $f \in H^{-1}(\Omega)$.

$$
\begin{aligned}
-\Delta n=-\nabla \cdot \nabla n & =f(x) \\
n(x) & =0 \quad(x \in \partial \Omega)
\end{aligned}
$$

This is called the Poisson problem (with Dirichlet BCs).
Weak form?

$$
\int_{\Omega} \nabla_{u} \cdot \nabla_{v} v d x=\int_{\Omega} f v d x \quad \forall v \in H_{0}^{1}
$$

Ellipticity

Let V be Hilbert space.

V-Ellipticity

A bilinear form $a(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ is called coercive if there exists a constant $c_{0}>0$ so that

$$
c_{0}\|u\|_{v}^{2} \subseteq a(u, u) \quad \text { for all } u \in V
$$

and a is called continuous if there exists a constant $c_{1}>0$ so that

$$
a(u, v) \leq c_{1}\|u\|_{v}\|v\|_{v}
$$

If a is both coercive and continuous on V, then a is said to be V-elliptic.

Lax-Milgram Theorem
Let V be Hilbert space with inner product $\langle\cdot, \cdot\rangle$.
Lax-Milgram, Symmetric Case
Let a be a V-elliptic bilinear form that is also symmetric, and let g be a bounded linear functional on V.
Then there exists a unique $u \in V$ so that $a(u, v)=g(v)$ for all $v \in V$.

$$
\begin{aligned}
(u, v)_{a}= & a(n, v) . \quad \text { sym n } \quad \text { linear) } \\
- & \text { Need } a(u, n) \geqslant 0 \\
& a(n, n) \geqslant c_{0}\|n\|_{v} \geqslant 0 \\
- & \text { Need } \quad a(n, n)=0 \Rightarrow n=0 . \\
\text { nR r } \quad 0= & a(n, n) \geqslant c_{0}\|u\|_{v}^{2} \geqslant 0 \Rightarrow n=0 .
\end{aligned}
$$

$$
\Rightarrow \text { existence and uniqueness. }
$$

Back to Poisson
Can we declare victory for Poisson?

$$
\|n\|_{n^{1}}=\|n\|_{2^{2}}+\left\|\nabla_{n}\right\|_{L^{2}}
$$

stab: $\quad\left|\int \bar{v}_{9} \cdot \nabla_{v}\right| \leq\left\|\nabla_{u}\right\|_{L^{2}}\left\|\nabla_{v}\right\|_{c^{2}}$

$$
\leq c_{1}\|u\|_{H^{\prime}}\|v\|_{H^{\prime}}
$$

corvine:

$$
\int_{\Omega} \nabla_{n} \cdot \nabla_{n} \geqslant c_{1}\left(\int \nabla_{n} \cdot \nabla_{n} d x+\int_{l} n^{2} d x\right)
$$

Can this inequality hold in general, without further assumptions?

| constants break coevcivity 11 |
| :---: | :---: | :---: |
| 0 |

Poincaré-Friedrichs Inequality (1/3)
Theorem (Poincaré-Friedrichs Inequality)
Suppose $\Omega \subset \mathbb{R}_{-}^{n}$ is bounded and $u \in \frac{11}{(}(\Omega)$. Then there exists a constant $C>0$ such that

$$
\|u\|_{L^{2}} \leq C\|\nabla u\|_{L^{2}} .
$$

$$
\begin{aligned}
& \nabla \cdot\left(n^{2} \vec{x}\right)=\partial_{1}\left(n^{2} x_{1}\right)+\cdots+\partial_{n}\left(n^{2} x_{n}\right) \\
&=n^{2}+2\left(n \partial_{1} n\right) x_{i}+\cdots+n^{2}+2\left(n \partial_{n} n\right) x_{1} \\
&=n n^{2}+2 n(\nabla n \cdot \vec{x}) \\
& u^{2}=\frac{1}{n} \nabla \cdot\left(n^{2} \vec{x}\right)-\frac{2}{n}\left(D_{n} \cdot \vec{x}\right) n \\
&\|u\|^{2}
\end{aligned}
$$

Poincaré-Friedrichs Inequality $(2 / 3)$
Prove the result in $C_{0}^{\infty}(\Omega)$.

$$
\begin{aligned}
& \|u\|_{\imath^{2}}^{2}=\int_{l}^{n^{2}}=\int_{\Omega} \frac{1}{n} \nabla \cdot\left(n^{2} \vec{x}\right)-\frac{2}{n}\left(\nabla_{n} \cdot \vec{x}\right) n d x \\
& =\frac{\frac{1}{n} \int_{\partial e^{2}}^{\int_{0} \hat{n} \cdot\left(n^{2} \vec{x}\right)} d S_{x}-\frac{2}{n} \int n \cdot\left(\nabla_{n} \cdot \vec{x}\right)}{\left.H_{s}\right)} d x \\
& \leq \frac{2}{n} \max _{x \in \Omega}|\vec{x}| \int|n \nabla u| d x=\frac{2}{n} \max _{x \in \Omega}\| \|\| \| u\| \|_{a}\|\nabla u\| \\
& \Rightarrow\|n\|_{n} \leqslant C \quad\left\|\nabla_{n}\right\|_{C} .
\end{aligned}
$$

Poincaré-Friedrichs Inequality (3/3)

Prove the result in $H_{0}^{1}(\Omega)$.
Inequality confines to hold in the limit because $\quad u_{n} \rightarrow u$ in $H_{\text {, }}$

$$
\left.\begin{array}{rl}
\Rightarrow & \left\|n_{k}-n\right\|_{L^{2}} \rightarrow 0 \\
& \left\|\nabla n_{k}-\nabla n\right\|_{L^{2}} \rightarrow 0
\end{array}\right] H^{\prime}-n_{1} r_{1}
$$

Back to Poisson, Again

Show that the Poisson bilinear form is coercive.

$$
\frac{1}{c^{2}+1}\|u\|_{H^{\prime}}^{2}=\frac{1}{c^{2}+1}\left(\|u\|_{L^{2}}^{2}+\|\nabla u\|_{c^{2}}^{2}\right)^{P F} \leq\|\nabla u\|_{L^{2}}=a(u, u)
$$

Draw a conclusion on Poisson:
Poisson $a(u, v)=\int \nabla u \cdot \nabla_{v}$ is coercive and continuous \Rightarrow exisforce and uni queness Lax-Milgran

Outline

```
Introduction
Finite Difference Methods for Time-Dependent Problems
Finite Volume Methods for Hyperbolic Conservation Laws
Finite Element Methods for Elliptic Problems
    tl;dr: Functional Analysis
    Back to Elliptic PDEs
    Galerkin Approximation
    Finite Elements: A 1D Cartoon
    Finite Elements in 2D
    Approximation Theory in Sobolev Spaces
    Saddle Point Problems, Stokes, and Mixed FEM
    Non-symmetric Bilinear Forms
```

Discontinuous Galerkin Methods for Hyperbolic Problems
(Ritz-Galerkin) \rightarrow use same space for u_{1}, v_{n}
Some key goals for this section:

- How do we use the weak form to compute an approximate solution?
- What can we know about the accuracy of the approximate solution?

Can we pick one underlying principle for the construction of the approximation?

Let be full miller space (H oo
$a(u, v)=g \mid v) \quad \forall v \in V \quad$ (el $V \leq H$
\Rightarrow Existence and uniqueness in V aslong as V is itself a Hilbert space
Mich a finite-dim subspace V_{h} (otter poly)

$$
a\left(u_{n}, v_{n}\right)=g\left(v_{n}\right) \quad\left(v_{n} \in V_{h}\right)
$$

Each Lest function J gives rise to a row of a

Galerkin Orthogonality

$$
\begin{aligned}
& a\left(\alpha_{n}+\beta w, v\right)= \\
& \quad \alpha a(u, v)+\beta a(w, v)
\end{aligned}
$$

Céa's Lemma

Let $V \subset H$ be a closed subspace of a Hilbert space H.

Céa's Lemma

Let $a(\cdot, \cdot)$ be a coercive and continuous bilinear form on V. In addition, for a bounded linear functional g on V, let $u \in V$ satisfy

$$
a(u, v)=g(v) \quad \text { for all } v \in V .
$$

Consider the finite-dimensional subspace $V_{h} \subset V$ and $u_{h} \in V_{h}$ that satisfies

$$
a\left(u_{h}, v_{h}\right)=g\left(v_{h}\right) \quad \text { for all } v_{h} \in V_{h} .
$$

Then

$$
\left\|u-u_{n}\right\|_{v} \leq \frac{c_{1}}{c_{0}} \inf _{v_{h} \in v_{L}}\left\|u-v_{n}\right\|_{V}
$$

Céa's Lemma: Proof

Recall Galerkin orthogonality: $a\left(u_{h}-u, v_{h}\right)=0$ for all $v_{h} \in V_{h}$. Show the result.

$$
\begin{aligned}
c_{0}\left\|u-u_{h}\right\|^{2} & \leq a\left(n-u_{n 1} n-u_{n}\right) \quad \text { Goledeckic orin } \\
& =a\left(n-u_{n}, u-v_{n}\right)+a\left(n-\left.u_{n}\right|_{1} v_{n}-u_{n}\right. \\
& =a\left(a-u_{n}, u-v_{n}\right) \\
& \leq c_{1}\left\|u-u_{n}\right\|_{v}\left\|u-v_{n}\right\|_{v}
\end{aligned}
$$

Elliptic Regularity

Definition (H^{s} Regularity)

Let $m \geq 1, H_{0}^{m}(\Omega) \subseteq V \subseteq H^{m}(\Omega)$ and $a(\cdot, \cdot)$ a. V-elliptic bilinear form. The bilinear form $a(u, v)=\langle f, v\rangle$ for all $v \in V$ is called H^{s} regular, if for every $f \in H^{s-2 m}$ there exists a solution $u \in H^{s}(\Omega)$ and we have with a constant $C(\Omega, a, s)$,

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H_{0}^{1}-elliptic bilinear form with sufficiently smooth coefficient functions.

