Céa's Lemma

Let $V \subset H$ be a closed subspace of a Hilbert space H.

Céa's Lemma

Let $a(\cdot, \cdot)$ be a coercive and continuous bilinear form on V. In addition, for a bounded linear functional g on V, let $u \in V$ satisfy

$$\longrightarrow a(u,v) = g(v)$$
 for all $v \in V$.

Consider the finite-dimensional subspace $V_h \subset V$ and $u_h \in V_h$ that satisfies

Céa's Lemma: Proof

Recall Galerkin orthognality: $a(u_h - u, v_h) = 0$ for all $v_h \in V_h$. Show the result.

For any
$$V_{k} \in V_{k}$$
:
 $C_{0} || v - v_{k} ||_{v} \leq a (v - v_{k} | v - v_{k}) = 0 (G_{0})$
 $= a (v - v_{k} | v - v_{k}) + a (v - v_{k} | v_{k} - v_{k})$
 $\leq c_{1} || v - v_{k} || || v - v_{k} ||$
 $\leq ince v_{k} was arbitradi []$

Elliptic Regularity

Definition (H^s Regularity)

Let $m \ge 1$, $H_0^m(\Omega) \subseteq V \subseteq H^m(\Omega)$ and $a(\cdot, \cdot)$ a V-elliptic bilinear form. The bilinear form $a(u, v) = \langle f, v \rangle$ for all $v \in V$ is called H^s regular, if for every $f \in H^{s-2m}$ there exists a solution $u \in H^s(\Omega)$ and we have with a constant $C(\Omega, a, s)$,

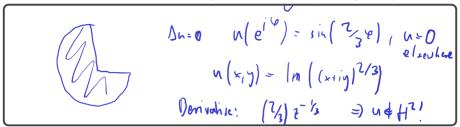
$$\| u \|_{H^{5}} \in C(\mathcal{N}_{1}^{n}, 5) \| f \|_{H^{52m}}$$

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H_0^1 -elliptic bilinear form with sufficiently smooth coefficient functions.

Elliptic Regularity: Counterexamples

Are the conditions on the boundary essential for elliptic regularity?



, on the circle

Are there any particular concerns for mixed boundary conditions?

Estimating the Error in the Energy Norm

Come up with an idea of a bound on $||u - u_h||_{H^1}$.

$$\begin{array}{c|c} \left\| u \cdot u \right\|_{H^{1}} \in \mathbb{C} \quad \text{inf} \quad \left\| u \cdot v_{h} \right\|_{H^{2}} \in \mathbb{C} \quad \left\| u - I_{h} u \right\|_{H^{2}} \\ \left\| v_{e} v_{h} \right\|_{H^{2}} \in \mathbb{C} \quad \left\| u \right\|_{H^{2}} \in \mathbb{C} \quad h \quad \left\| j \right\|_{L^{2}} \\ \hline \mathbb{C} \quad \left\| u \right\|_{H^{2}} \in \mathbb{C} \quad h^{2} \\ \left\| u \right\|_{L^{2}} \quad \left\| v_{e} v_{h} \right\|_{L^{2}} \\ \hline \left\| u \right\|_{L^{2}} \quad \left\| v_{e} v_{h} \right\|_{L^{2}} \\ \hline \left\| u \right\|_{L^{2}} \quad \left\| v_{e} v_{h} \right\|_{L^{2}} \\ \hline \left\| v_{h} v_{h} v_{h} \right\|_{L^{2}} \\ \hline \left\| v_{h} v_{h} v_{h} \right\|_{L^{2}} \\ \hline \left\| v_{h} v_{h} v_{h} v_{h} \right\|_{L^{2}} \\ \hline \left\| v_{h} v_{h} v_{h} v_{h} v_{h} \right\|_{L^{2}} \\ \hline \left\| v_{h} v_{h$$

What's still to do?

L^2 Estimates

Let *H* be a Hilbert space with the norm $\|\cdot\|_H$ and the inner product $\langle \cdot, \cdot \rangle$. (Think: $H = L^2$, $V = H^1$.)

Theorem (Aubin-Nitsche)

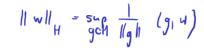
Let $V \subseteq H$ be a subspace that becomes a Hilbert space under the norm $\|\cdot\|_V$. Let the embedding $V \to H$ be continuous. Then we have for the finite element solution $u \in V_h \subset V$:

$$\| u - u_n \|_{H} \leq c_1 \| u - u_n \|_{V} \sup_{g \in H} \left(\frac{1}{\|g\|_{H}} \inf_{v_n \in V_n} \|v_n\|_{V} \right)$$

if with every $g \in H$ we associate the unique (weak) solution φ_g of the equation (also called the dual problem) (v, v) = j(v)

$$a(w, y_g) - (g, w)$$

Aubin-Nitsche: Proof



 L^2 Estimates using Aubin-Nitsche

$$\|u - u_h\|_H \le c_1 \|u - u_h\|_V \sup_{g \in H} \left[\frac{1}{\|g\|_H} \inf_{v_h \in V_h} \|\varphi_g - v_h\|_V\right],$$

If $u \in H_0^1(\Omega)$, what do we get from Aubin-Nitsche?

So does Aubin-Nitsche give us an L^2 estimate?