Estimating the Error in the Energy Norm
Come up with an idea of a bound on $\left\|u-u_{h}\right\|_{H^{1}}$.

What's still to do?
\square
L^{2} Estimates
Let H be a Hilbert space with the norm $\|\cdot\|_{H}$ and the inner product $\langle\cdot, \cdot\rangle$.
(Think: $H=L^{2}, V=H^{1}$.)
Theorem (Aubin-Nitsche)
Let $\widehat{V} \subseteq H$ be a subspace that becomes a Hilbert space under the norm $\|\cdot\|_{V}$. Let the embedding $V \rightarrow H$ be continuous. Then we have for the finite element solution $u \in V_{h} \subset V$:

$$
\left\|u-u_{h}\right\|_{H} \leqslant c_{1}\left\|u-u_{h}\right\|_{V} \cdot \sup _{g \in H H_{d} d}\left[\frac{1}{\left\|_{g}\right\|_{H}} \quad \text { inf } \text { if }_{H_{H} V_{h}}\left\|\varphi_{g}-v_{h}\right\|_{V}\right]
$$

if with every $g \in H$ we associate the unique (weak) solution φ_{g} of the equation (also called the dual problem)

$$
\text { primal } \rightarrow a(n, v)=g(v) \quad \forall v
$$

dual $\rightarrow a(w, f g)=(g, w) \quad \forall w \leadsto$ corr, back to Br p ?

Aubin-Nitsche: Proof

$$
\begin{aligned}
& \|w\|_{H 1}=\sup _{g \in H \cdot(0)\left\|_{g}\right\|_{H}} \quad n_{s 1} \text { for } w=n \cdot n_{1} \\
& \left(g, n-n_{n}\right) \stackrel{\text { nnd }}{=} a\left(n-n_{n}, v_{g}\right) \stackrel{60}{=} a\left(u-n_{n}, \varphi_{j}-v_{n}\right) \\
& \leqslant c_{1}\left\|u \cdot n_{h}\right\|_{v}\left\|\varphi_{j}-v_{h}\right\|_{r} \\
& \left|y, n-n_{n}\right|<c_{1}\left\|n-n_{h}\right\|_{V} \inf _{v_{h} \in V_{i}}\left\|p_{j}-V_{h}\right\|_{V} \\
& \left\|u-u_{h}\right\|_{H}=\sup _{g \in H} \frac{\left(y, b-n_{h}\right)}{\|g\|} \leqslant c_{1}\left\|u-u_{h}\right\|_{V} \cdot \sup _{g \in \|}\left(\frac{1}{\|g\|_{H}} \operatorname{iif}_{V_{h} \in V_{i}}\left\|\rho_{j}-V_{h}\right\|_{V}\right)
\end{aligned}
$$

L^{2} Estimates using Aubin-Nitsche

$$
H_{u}-u_{h}\left\|_{H} \leq c_{1}\right\| u-u_{h} \|_{V} \sup _{g \in H}\left[\frac{1}{\|g\|_{H}} \inf _{v_{h} \in V_{h}}\left\|\varphi_{g}-v_{h}\right\|_{V}\right] \text {, }
$$

If $\mu \in H_{0}^{1}(\Omega)$, what do we get from Aubin-Nitsche?

$$
\begin{aligned}
& \text { For Poison in } H_{0}^{\prime} \text {, dual = primal. } \\
& \text { Inf }\left\|\rho_{g} \cdot v_{h}\right\|_{H H^{\prime}} \subseteq C\left\|\rho_{g}-I_{h} \varphi_{g}\right\|_{H^{\prime}} \leq C h\left\|\varphi_{j}\right\|_{H^{2}} \leq C \cdot h\|g\|_{L^{2}} \\
& \left\|u-u_{h}\right\|_{H} \in C_{1}\left\|n-u_{h}\right\|_{V} C \cdot h \leq C \cdot h^{2}\|F\|_{L^{2}}
\end{aligned}
$$

So does Aubin-Nitsche give us an L^{2} estimate?
Yes.

Outline

Introduction
 Finite Difference Methods for Time-Dependent Problems
 Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems
tl;dr: Functional Analysis
Back to Elliptic PDEs
Galerkin Approximation
Finite Elements: A 1D Cartoon
Finite Elements in 2D
Approximation Theory in Sobolev Spaces
Saddle Point Problems, Stokes, and Mixed FEM
Non-symmetric Bilinear Forms

Discontinuous Galerkin Methods for Hyperbolic Problems

Finite Elements in 1D: Discrete Form
$\Omega:=[\alpha, \beta]$. Look for $u \in H_{0}^{1}(\Omega)$, so that $a(u, \varphi)=\langle f, \varphi\rangle$ for all
$\varphi \in H_{0}^{1}(\Omega)$. Choose $V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ and expand
$u_{h}=\sum_{i=1}^{n} u_{h}^{i} \varphi_{i} \in V_{h}$. Find the discrete system.

$$
\begin{gathered}
a\left(v_{n}, v_{n}\right)=\left(f, v_{n}\right) \quad \forall v_{n} \\
a\left(\sum_{i=1}^{n} u_{n}^{i} y_{i}, v_{n}\right)=\left(f, r_{n}\right) \quad \forall v_{n}
\end{gathered}
$$

Grids and Hats
Let $I_{i}:=\left[\alpha_{i}, \not, 7\right]$, so that $\bar{\Omega}=\bigcup_{i=0}^{N} I_{i}$ and $I_{i}^{\circ} \cap I_{j}=\emptyset$ for $i \neq j$. Consider a grid

$$
\alpha=\stackrel{\downarrow}{x_{0}}<\cdots<x_{N}<x_{N+1}^{\downarrow}=\beta
$$

ie. $\alpha_{i}=x_{i}, \beta_{i}=x_{i+1}$ for $i \in\{0, \ldots, N\}$. The $\left\{x_{i}\right\}$ are called nodes of the grid. $h_{i}:=x_{i+1}-x_{i}$ for $i \in\{0, \ldots, N\}$ and $h:=\max _{i} h_{i} . V_{h}$? Basis?

$$
P_{h}^{\prime}=\left\{v_{h} \in C^{0}(\bar{\Omega}):\left.v_{h}\right|_{I_{i}} \in \mathbb{P}^{\prime}\right\}
$$

For $:=\{0, N+1\}:$

$$
\varphi_{i}(x)= \begin{cases}\frac{1}{h_{i-1}}\left(x-x_{i-1}\right) & x \in I_{i-1} \\ \frac{1}{n_{i}}\left(x_{i-1}-x\right) & x \in I_{i} \\ 0 \text { oltari-1 }\end{cases}
$$

$$
\operatorname{sph}\left\{\varphi_{i}\right\}_{i}=P_{n}^{\prime}
$$

Degrees of Freedom and Matrices
Define something more general than basis coefficients to solve for.

$$
\begin{aligned}
& \gamma_{i:}: C(\dot{\Omega}) \rightarrow \mathbb{R} \quad v \longmapsto v\left(x_{i}\right) \in \mathbb{R} \\
& \hat{\imath} \text { global degrees of freedom } \\
& \text { span }\left\{\gamma_{i}\right\rangle=\left(\left.P_{n}^{\prime}\right|_{\text {dual space of }^{l_{\text {spa }}}}\right.
\end{aligned}
$$

Define shape functions and assemble the stiffness matrix:

$$
\begin{array}{r}
\text { Shape functions } \hat{\varphi}_{i}: \quad \gamma_{i}\left(\hat{\varphi}_{j}\right)=\delta_{i, j} \quad \text { for } i, j \in\{0, \ldots, N k) \\
a\left(u_{n}, v_{h}\right)=\left(\rho_{1} v_{n}\right) \\
\left(f_{1}, \hat{\varphi}_{i}\right)=a\left(u_{n}, \hat{\varphi}_{i}\right)=\sum_{j=1}^{\sum_{j}} \underbrace{\gamma\left(u_{n}\right)}_{u_{n} \text { knows }} \underbrace{a\left(\hat{\varphi}_{j}, \hat{\varphi}_{i}\right)}_{i \text { matrix }} \quad(i=1 \ldots N)
\end{array}
$$

A Matrix Property for Efficiency

$$
\begin{aligned}
& a(u, v)=\int u^{\prime} v^{\prime} \\
& \quad\left(A_{h}\right)_{i, j}=a\left(\hat{\varphi}_{j}, \hat{\varphi}_{i}\right) .
\end{aligned}
$$

$$
a_{i, j}
$$

Anything special about the matrix?
tuidiagoud here, sparse in gourd
$a_{i, i} \neq 0$
$a_{i}, i+1$
$a_{i, i-1}$

- thawing $=0$

Error Estimation

According to Céa, what's our main missing piece in error estimation now?

$$
\begin{aligned}
I_{h}^{1}: C^{0}(\bar{\Omega}) & \rightarrow P_{h}^{1} \\
v & \mapsto \sum_{i=0}^{N+1} \gamma_{i}(v) \hat{\rho}_{i} \in P_{n}^{1}
\end{aligned}
$$

Interpolation Error (1D-only)
For $v \in H^{2}(\Omega)$,

$$
\begin{aligned}
& \left\|v-I_{h}^{1} v\right\|_{L^{2}} \leqslant h^{2}|v|_{H^{2}} \\
& \left\|v-I_{h}^{1} v\right\|_{H^{1}} \leqslant h \quad|v|_{H^{2}}
\end{aligned}
$$

If $v \in H^{1}(\Omega) \backslash H^{2}(\Omega)$,

$$
\begin{aligned}
& \left\|v-I_{h}^{1} v\right\|_{L^{2}} \leq h \mid v /_{H^{\prime}} \\
& \left\|v-I_{h}^{1} v\right\|_{H^{\prime}} \longrightarrow 0 \quad(h \rightarrow 0)
\end{aligned}
$$

Is I_{h}^{1} defined for $v \in H^{2}$? for $v \in H^{1} \backslash H^{2}$?
For general dim n, answer depends on shape of Ω.
\rightarrow "Sobolev em bedding theorem"

Interpolation Error: Towards an Estimate

$$
a\left|u_{n}, u_{n}\right|=\left(f, v_{n}\right)
$$

Provide an a-priori estimate.

$$
\left.\left\|u-u_{n}\right\|_{H^{\prime}} \leq \frac{c_{1}}{c_{0} i_{v_{n}} \in P_{n}^{\prime}}\left\|n-v_{n}\right\|_{H^{\prime}} \leqslant \frac{c_{1}}{c_{0}}\left\|u-I_{h^{\prime}}^{\prime} u\right\|_{H^{\prime}} \leqslant \frac{c_{1}}{c_{0}} \right\rvert\, n \|_{H^{2}}
$$

What's the relationship between $I_{h}^{1} u$ and u_{h} ?
Not the same!

Is there a simple way of constructing the polynomial basis?
A FEN burs car be thought of as a composition;

- reference / local basis
- local - to-globul mapping T

Local-to-Global: Math reform ace cords

Construct a polynomial basis using this approach.

$$
\begin{aligned}
& \hat{\varphi}_{0}(\hat{x})=1-\hat{x} \\
& \hat{\varphi}_{1}(\hat{x})=\hat{x}
\end{aligned}
$$

To gat a basis of $P^{\prime}\left(I_{1}\right)$:

$$
\begin{aligned}
& \varphi_{i}(x)=\left\{\begin{array}{ll}
\hat{\varphi}_{1} \circ T_{i-1}^{-1}(x) & x \in\left[x_{i+1}, x_{i}\right] \\
\hat{\varphi}_{0} \circ T_{i}^{-1}(x) & x \in\left[x_{i}, x_{i+1}\right]
\end{array}\right\} \\
& \Gamma^{\text {global coords }}
\end{aligned}
$$

Demo

Demo: Developing FEM in 1D [cleared]

