A Boundary Value Problem

Consider the following elliptic PDE

$$-\nabla \cdot (\kappa(\mathbf{x}) \nabla u) = f(\mathbf{x}) \quad \text{for } \mathbf{x} \in \Omega \subset \mathbb{R}^2,$$
$$u(\mathbf{x}) = 0 \quad \text{when} \quad \mathbf{x} \in \partial \Omega.$$

Weak form?

Weak Form: Bilinear Form and RHS Functional

Hence the problem is to find $u \in V$, such that

$$a(u,v) = g(v)$$
, for all $v \in V = H_0^1(\Omega)$

(h=)

where...

Is this symmetric, coercive, and continuous?

$$symm: \sqrt{\sum_{k,x \in M} s_{nys}} yeah!$$

$$coercivitiy: c_{||u||_{H'}^{L}} \leq a(u_{1}u) \in 0 < c \leq k(x) \forall x$$

$$continuity: a(u_{1}v) \leq ||u|||_{H'}^{L} \in k(x) \in C < \infty \forall x$$

$$243$$

Triangulation: 2D

Suppose the domain is a union of triangles E_m , with vertices x_i .

$$\bar{\Omega} = \bigcup_{i=1}^{M} E_m$$

.

Elements and the Bilinear Form

If the domain, Ω , can be written as a disjoint union of elements, E_k ,

$$\Omega = \cup_{m=1}^{M} E_{m} \quad \text{with} \quad E_{i}^{\circ} \cap E_{j}^{\circ} = \emptyset \text{ for } i \neq j,$$

what happens to a and g?

$$a(u,v) = \sum_{m=1}^{M} \int_{E_{m}} \kappa(u) \cdot \nabla v$$

$$g(v) = \sum_{m=1}^{M} \int_{E_{m}} F v$$

Basis Functions

Expand

$$\underline{u_N}(\mathbf{x}) = \sum_{i=1}^{N_p} \underline{u}_i \varphi_i, (\mathbf{x})$$

and plug into the weak form.

Global Lagrange Basis

Approximate solution u_h : Piecewise linear on Ω

The Lagrange basis for V_h consists of piecewise linear φ_i , with...

Basis Functions Features

Features of the basis?

Local Basis

What basis functions exist on each triangle?

Local Basis Expressions

Write expressions for the nodal linear basis in 2D.

Higher-Order, Higher-Dimensional Simplex Bases

What's an *n*-simplex?

Give a higher-order polynomial space on the *n*-simplex:

Give nodal sets (on the \triangle) for P^N and dim P^N in general.

XI412C/

Finding a Nodal/Lagrange Basis in General

Given a nodal set $(\xi_i)_{i=1}^{N_p} \subset \hat{E}$ (where \hat{E} is the reference element) and a basis $(\varphi_j)_{i=1}^{N_p} : \hat{E} \to \mathbb{R}$, find a Lagrange basis.

Element Mappings

Construct a mapping $T_m: \hat{E} \to E_m$. Reference element \hat{E} , global $\triangle E_m$.

$$T_{m}\left(\underbrace{r_{1}s}_{e^{T}}\right) = \left(\underbrace{x_{1}}_{e^{T}}, i\right) r + \left(\underbrace{x_{3}}_{e^{T}}, x_{1}\right) s + \widehat{x_{1}}$$

What is the Jacobian of T_m ?

$$\int_{\mathcal{T}} \tau^{\varepsilon} \left(\vec{x}_{i}, \vec{y}_{i}, \vec{x}_{j}, \vec{x}_{i} \right) \in \mathbb{N}^{1 \times 2}$$

Constructing the Global Basis

Construct a basis on the element E_m from the reference basis $(\breve{\varphi}_j)_{j=1}^{N_p} : E_m \to \mathbb{R}.$

$$\Psi_{j}(\bar{x}) - \hat{\Psi}_{j}(\underline{T}_{n}^{-1}(\bar{x}))$$

What's the gradient of this basis?

$$\nabla_{\vec{x}} \varphi_{j} \left(T^{-1}(\vec{x}) \right) = \left[\begin{array}{c} \frac{d}{dx} \varphi_{j} \left(T^{-1}(\vec{x}) \right) \right]^{T}$$
$$= \left[\begin{array}{c} \frac{d}{dx} \varphi_{j} \left(T^{-1}(\vec{x}) \right) \right]^{T}$$
$$= \left[\begin{array}{c} \frac{d}{dx} \varphi_{j} \left(T^{-1}(\vec{x}) \right) \right]^{T}$$
$$= \left[\begin{array}{c} T^{+1}(\vec{x}) \end{array}\right]^{T} \left(\vec{x} \right] \nabla_{\vec{x}} \varphi_{j} \left(T^{-1}(\vec{x}) \right) \right]$$

Assembling a Linear System

Express the matrix and vector elements in

$$\sum_{j=1}^{N_p} u_j a(\varphi_j, \varphi_i) = g(\varphi_i) \quad \text{for } i = 1, \dots, N_p.$$

Integrals on the Reference Element

Evaluate

$$\int_{E} \kappa(\boldsymbol{x}) \nabla_{\boldsymbol{x}} \varphi_i(\boldsymbol{x})^T \nabla_{\boldsymbol{x}} \varphi_j(\boldsymbol{x}) d\boldsymbol{x}.$$

Inhomogeneous Dirichlet BCs Handle an inhomogeneous boundary condition $u(\mathbf{x}) = \eta(\mathbf{x})$ on $\partial \Omega$. uctin? - Find $u^{0} \in H^{1}(\mathcal{R})$ with $u^{0}(x) = \gamma(x)$ on $\partial \mathcal{R}$ · Define n- n- nº E +1'o! (phew!) 1 = 1 + 10° $a(\hat{u}+u^{0},v)=a(\hat{u},v)+a(u^{0},v)=g(v)$ \rightarrow a|n,v| = g(v) - a(n,v)

Demo

- Demo: Developing FEM in 2D [cleared]
- Demo: 2D FEM Using Firedrake [cleared]
- **Demo:** Rates of Convergence [cleared]

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems

tl;dr: Functional Analysis Back to Elliptic PDEs Galerkin Approximation Finite Elements: A 1D Cartoon Finite Elements in 2D Approximation Theory in Sobolev Spaces Saddle Point Problems, Stokes, and Mixed FEN Non-symmetric Bilinear Forms

Discontinuous Galerkin Methods for Hyperbolic Problems