A Boundary Value Problem

Consider the following elliptic PDE

$$
\begin{aligned}
-\nabla \cdot(\kappa(\boldsymbol{x}) \nabla u) & =f(\boldsymbol{x}) \quad \text { for } \boldsymbol{x}
\end{aligned}=\Omega \subset \mathbb{R}^{2}, ~ \begin{aligned}
u(\boldsymbol{x}) & =0 \quad \text { when } \quad \boldsymbol{x}
\end{aligned} \in \partial \Omega .
$$

Weak form?

$$
\underbrace{\int_{\Omega} k \nabla u \cdot \nabla v}_{a(n, v)}=\underbrace{\int_{\Omega} f v}_{g(v)}
$$

Weak Form: Bilinear Form and RHS Functional
Hence the problem is to find $u \in V$, such that

$$
a(u, v)=g(v), \quad \text { for all } v \in V=H_{0}^{1}(\Omega)
$$

where...

$$
\underbrace{\int_{\Omega} k^{(\lambda)} \nabla u \cdot \nabla v}_{a(u, v)}=\underbrace{\int_{\Omega} f v}_{g(v)}
$$

Is this symmetric, coercive, and continuous?
gym:
coercivitiy: $\quad c_{1}\|n\|_{M^{\prime}}^{2} \leq a(n, n)$

$$
\Longrightarrow \operatorname{lax}-M \operatorname{say} 5
$$

yeah!
continuity: $\left.\quad a(u, v) \leq\|n\|\left\|_{H^{\prime}}\right\|_{H H^{\prime}} \quad \in \quad k(x) \leq C<\infty \quad \forall x\right)$

Triangulation: 2D

Suppose the domain is a union of triangles E_{m}, with vertices x_{i}.

E_{m}

$$
\bar{\Omega}=\bigcup_{i=1}^{M} E_{m} .
$$

Elements and the Bilinear Form

If the domain, Ω, can be written as a disjoint union of elements, E_{k},

$$
\Omega=\cup_{m=1}^{M} E_{m} \quad \text { with } \quad E_{i}^{\circ} \cap E_{j}^{\circ}=\emptyset \text { for } i \neq j,
$$

what happens to a and g ?

$$
\begin{aligned}
a(n, v) & =\sum_{m=1}^{M} \int_{E_{n}} k(v) \cdot \nabla \cdot \nabla v \\
g(v) & =\sum_{m=1}^{M} \int_{E_{n}} F v
\end{aligned}
$$

Basis Functions

Expand

$$
u_{N}(\boldsymbol{x})=\sum_{i=1}^{N_{p}}{\underset{\sim}{i}}^{u_{i}} \varphi_{i},(\vec{x})
$$

and plug into the weak form.

$$
a\left(n_{N 1} \varphi_{i}\right)=\sum_{j=1}^{N_{p}} n_{j} a\left(\varphi_{j}, \varphi_{i}\right) \quad i=1 \ldots N_{p}
$$

Global Lagrange Basis

Approximate solution u_{h} : Piecewise linear on Ω

The Lagrange basis for V_{h} consists of piecewise linear φ_{i}, with. .

Basis Functions Features

Features of the basis?

- U_{N} must be continuous $\left(\mathrm{C}^{\circ}\right)$ because basis
- Ne striated to $E_{n \text {, }}$ each pi is liner.

Local Basis

What basis functions exist on each triangle?

Local Basis Expressions

Write expressions for the nodal linear basis in 2D.

$$
\xrightarrow[r r r s]{\varphi_{1}(r, s)}=1-r-s
$$

Higher-Order, Higher-Dimensional Simplex Bases
What's an n-simplex?

$$
r_{i} \geqslant 0 \quad \sum_{i} r_{i} \leqslant 1
$$

\square

Give a higher-order polynomial space on the n-simplex:

$$
\begin{aligned}
P^{N} & =\operatorname{span}\left\{\prod_{i=1}^{d} r_{i}^{n_{i}}:\left[n_{i} \leq N\right\}\right. \\
P^{2} \text { in 2D: } & 1, r, s, r^{2}, s^{2}, r s
\end{aligned}
$$

Give nodal sets (on the \triangle) for P^{N} and $\operatorname{dim} P^{N}$ in general.

pr

Finding a Nodal/Lagrange Basis in General

Given a nodal set $\left(\xi_{i}\right)_{i=1}^{N_{p}} \subset \hat{E}$ (where \hat{E} is the reference element) and a basis $\left(\varphi_{j}\right)_{j=1}^{N_{p}}: \hat{E} \rightarrow \mathbb{R}$, find a Lagrange basis.
(do a linear solve)

Element Mappings

Construct a mapping $T_{m}: \hat{E} \rightarrow E_{m}$. Reference element \hat{E}, global $\triangle E_{m}$.

$$
T_{m}(\underbrace{r, s}_{=\vec{r}^{\top}})=\left(\vec{x}_{1}-\vec{x}_{1}\right) r+\left(\vec{x}_{3}-\vec{x}_{1}\right) s+\vec{x}_{1}
$$

What is the Jacobian of T_{m} ?

$$
J_{T}=\left(\begin{array}{ll}
\vec{x}_{2} \vec{x}_{1} & \vec{x}_{3}-\vec{x}_{1}
\end{array}\right) \in \Pi^{2 \times 2}
$$

Constructing the Global Basis

Construct a basis on the element E_{m} from the reference basis $\left(\widehat{\varphi}_{j}\right)_{j=1}^{N_{p}}: E_{m} \rightarrow \mathbb{R}$.

$$
\varphi_{j}(\vec{x})=\hat{\varphi}_{j}\left(\frac{\left.T_{n}^{-1}(\vec{x})\right)}{\hat{r}}\right.
$$

What's the gradient of this basis?

$$
\begin{aligned}
\nabla_{\vec{x}} \varphi_{j}\left(T^{-1}(\vec{x})\right) & =\left[\frac{d}{d x} \varphi_{j}\left|T^{-1}(\vec{x})\right|\right]^{T} \\
& =\left[\left.\frac{d \varphi_{j}}{d \vec{r}}\right|_{T^{\prime \prime}(\vec{x})} j_{T}^{-1}(\vec{x})\right]^{T} \\
& =J_{T}^{-T}\left(\vec{x} \mid \nabla_{\vec{r}} \varphi_{j}\left(T^{-1} \mid \vec{x}\right)\right)
\end{aligned}
$$

Assembling a Linear System

Express the matrix and vector elements in

$$
\sum_{j=1}^{N_{p}} u_{j} a\left(\varphi_{j}, \varphi_{i}\right)=g\left(\varphi_{i}\right) \quad \text { for } i=1, \ldots, N_{p} .
$$

$$
\begin{aligned}
a\left(\varphi_{j}, \varphi_{i}\right) & =\sum_{m=1}^{M} \int_{E_{n}} k(\dot{x}) \nabla e_{i}^{(x)} \cdot \nabla \varphi_{j}^{(x)} d x \\
g\left(\varphi_{i}\right) & =\sum_{m=1}^{M} \int_{E_{m}} F(x) \varphi_{i}(x) d x
\end{aligned}
$$

Integrals on the Reference Element
Evaluate

$$
\begin{aligned}
& \int_{E} \kappa(x) \nabla_{x} \varphi_{i}(\boldsymbol{x})^{T} \nabla_{x} \varphi_{j}(x) d x . \\
= & \int_{\epsilon} k(x)\left(\eta_{\sigma}^{-T} \nabla_{r} \varphi_{i}\right)^{\top}\left(\nabla_{T}^{-T} \nabla_{r} \varphi_{j}\right) d x \\
->\stackrel{P^{\prime}}{=} & \left(\sigma_{r}^{-T} \nabla_{r} \varphi_{i}\right)^{\top}\left(J_{T}^{-T} \nabla_{r} \varphi_{j}\right)_{E} k(x) \int_{x}
\end{aligned}
$$

And now the RHS functional.

$$
\rightarrow \quad \int_{E} f(x) \varphi_{i}(x) d x=\left|j^{\eta}\right| \int_{\hat{E}} f(\sigma(r)) \hat{\varphi}_{i}(r) d \vec{r}
$$

Inhomogeneous Dirichlet PCs
Handle an inhomogeneous boundary condition $u(\boldsymbol{x})=\eta(\boldsymbol{x})$ on $\partial \Omega$.
$u \in H_{0}^{\prime}$?

- Find $u^{0} \in H^{\prime}(\Omega)$ with $u^{0}(x)=\eta(x)$ on. $\partial \Omega$
- Define $\begin{aligned} & \hat{n}=n-n^{0} \in H_{0}^{\prime} \text { ! (phew!) } \\ & n=\hat{n}+n^{0}\end{aligned}$

$$
\begin{aligned}
& n=\hat{u}+n^{0} \\
& a\left(\hat{u}+n^{0}, v\right)=a(\hat{u}, v)+\underline{a\left(u^{0}, v\right)}=g(v) \\
& \rightarrow a|\hat{n}, v|=g(v)-a\left(u^{0}, v\right)
\end{aligned}
$$

Demo

- Demo: Developing FEM in 2D [cleared]
- Demo: 2D FEM Using Firedrake [cleared]
- Demo: Rates of Convergence [cleared]

Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems
tl;dr: Functional Analysis
Back to Elliptic PDEs
Galerkin Approximation
Finite Elements: A 1D Cartoon
Finite Elements in 2D
Approximation Theory in Sobolev Spaces
Saddle Point Problems, Stokes, and Mixed FEM
Non-symmetric Bilinear Forms

