Announcements

- In person next week (hopefully?)
 - 2025 C1F
- Discussion invites
- HV1
Examples: Order, Linearity?

\[(xu^2)u_{xx} + (u_x + y)u_{yy} + u_x^3 + yu_y = f\]

\[\text{quasilinear, 2nd order}\]

\[(x + y + z)u_x + (z^2)u_y + (\sin x)u_z = f\]

\[\text{semilinear, 1st order}\]
Properties of Domains

\[u(t, x) \in C^2(\mathbb{R}^d) \quad t \in [0, T] \]

- Domain impact on existence of solution?
 - comes
 - reentrant comes
 - caps
Function Spaces: Examples

Name some function spaces with their norms.

\(C^{0}(\mathbb{R}) : \) continuous

\(C^{k}(\mathbb{R}) : k \)-times continuously differentiable

\(C^{0,1}(\mathbb{R}) : \) \[\| f \|_{0,1} = \| f \|_{\infty} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} \]

\(C_{L}(\mathbb{R}) : \) "Lip sol of cond" \[|f(x) - f(y)| \leq C \| x - y \| \]

\(L^{2}(\mathbb{R}) = \{ u : \mathbb{R} \rightarrow \mathbb{R} : \int_{-\infty}^{\infty} |u(x)|^2 \, dx < \infty \} \quad \| u \|_{2} = \sqrt{\int_{-\infty}^{\infty} |u(x)|^2 \, dx} \)

\(H^{1}(\mathbb{R}) = \{ u \in L^{2}(\mathbb{R}) : \int_{-\infty}^{\infty} |u(x)|^2 \, dx < \infty \} \quad \| u \|_{1} = \| u \|_{2} + \| u' \|_{2} \)

May also influence existence/uniqueness of solutions!
Solving PDEs

Closed-form solutions:

- If separation of variables applies to the domain: good luck with your ODE
- If not: Good luck! \(\rightarrow \) Numerics

General Idea (that we will follow some of the time)

- Pick \(V_h \subseteq V \) finite-dimensional
 - \(h \) is often a mesh spacing
- Approximate \(u \) through \(u_h \in V_h \)
- Show: \(u_h \rightarrow u \) (in some sense) as \(h \rightarrow 0 \)

Example

\(u(x) = \sin(x) \)
About grand big unifying theories

Is there a grand big unifying theory of PDEs?

NO
Collect some stamps

\[a(x, y)u_{xx} + 2b(x, y)u_{xy} + c(x, y)u_{yy} + d(x, y)u_x + e(x, y)u_y + f(x, y)u = g(x, y) \]

<table>
<thead>
<tr>
<th>Discriminant value</th>
<th>Kind</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b^2 - ac < 0)</td>
<td>Elliptic</td>
<td>Laplace (u_{xx} + u_{yy} = 0)</td>
</tr>
<tr>
<td>(b^2 - ac = 0)</td>
<td>Parabolic</td>
<td>Heat (u_t = u_{xx})</td>
</tr>
<tr>
<td>(b^2 - ac > 0)</td>
<td>Hyperbolic</td>
<td>Wave (u_{tt} = u_{xx})</td>
</tr>
</tbody>
</table>

Where do these names come from?

Search for characteristic curves

(See lecture notes by Hogg)
PDE Classification in Other Cases

Scalar first order PDEs?
- Hyperbolic

First order systems of PDEs?
- All types (ell, par, hyper) are possible, see Hogg for classification
Classification in higher dimensions

\[Lu := \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i,j}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \text{lower order terms} \]

Consider the matrix \(A(x) = (a_{ij}(x))_{i,j} \). May assume \(A \) symmetric. Why?

Schwarz's theorem

What cases can arise for the eigenvalues?

- \(\exists j : \lambda_j = 0 \) (parabolic case)
- \(\lambda_j \) all have same sign (elliptic case)
- all but one have same sign (hyperbolic case)
- more than one with different signs (ultra-hyperbolic)
Elliptic PDE: Laplace/Poisson Equation

\[\Delta u = \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} = \nabla \cdot \nabla u(x) \overset{2D}{=} u_{xx} + u_{yy} = f(x) \quad (x \in \Omega) \]

Called Laplace equation if \(f = 0 \). With Dirichlet boundary condition

\[u(x) = g(x) \quad (x \in \partial \Omega). \]

Demo: Elliptic PDE Illustrating the Maximum Principle [cleared]
Elliptic PDEs: Singular Solution

Demo: Elliptic PDE Radially Symmetric Singular Solution [cleared]

Given $G(x) = C \log(|x|)$ as the free-space Green’s function, can we construct the solution to the PDE with a more general f?

\[
\Delta u = f
\]
\[
\Rightarrow \Delta u = f
\]

What can we learn from this?

Solution is globally coupled
Elliptic PDEs: Justifying the Singular Solution

\[u(x) = (G \ast f)(x) = \int_{\mathbb{R}^d} G(x - y)f(y)dy \]

Why?

\[\Delta u(x) = \Delta \int_{\mathbb{R}^d} G(x - y)f(y)dy \]
\[= \int_{\mathbb{R}^d} \Delta G(x - y)f(y)dy \]
\[= \int_{\mathbb{R}^d} \delta(x - y)f(y)dy = f(x) \]
Parabolic PDE: Heat Equation • Separation of Variables

\[u_t = u_{xx} \quad ((x, t) \in [0, 1] \times [0, T]) \]

\[u(x, 0) = g(x) \quad (x \in [0, 1]) \]

\[u(0, t) = u(1, t) = 0 \quad (t \in [0, T]) \]

Cap. \(u_{xx} + u_{yy} = 0 \)

Wave \(u_{tt} = u_{xx} \)

Plug into PDE:

\[v(t) \cdot w(x) = \frac{v''(t)}{v(t)} = C = \frac{w''(x)}{w(x)} \]

\[v'(t) - C \cdot v(t) \quad w''(x) = C \cdot w(x) \]

\[v(t) = \exp(-m^2 \pi^2 t) \quad w(x) = \alpha \cdot \sin(m \pi x) \]

\[\Rightarrow C = -m^2 \pi^2 \]
Demo: Parabolic PDE [cleared] What can we learn from analytic and numerical solution?

- "washes out" the solution
- final solution $f(x,t)$ becomes smoother
Hyperbolic PDE: Wave Equation

\[u_{tt} = c^2 u_{xx} \quad ((x, t) \in \mathbb{R} \times [0, T]) \]
\[u(x, 0) = g(x) \quad (x \in \mathbb{R}) \]

with \(g(x) = \sin(\pi x) \).

Is this problem well-posed?

Can be rewritten in conservation law form: