


Céa’s Lemma
Let V ⊂ H be a closed subspace of a Hilbert space H.

Céa’s Lemma
Let a(·, ·) be a coercive and continuous bilinear form on V . In addition, for
a bounded linear functional g on V , let u ∈ V satisfy

a(u, v) = g(v) for all v ∈ V .

Consider the finite-dimensional subspace Vh ⊂ V and uh ∈ Vh that satisfies

a(uh, vh) = g(vh) for all vh ∈ Vh.

Then
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Céa’s Lemma: Proof

Recall Galerkin orthgonality: a(uh − u, vh) = 0 for all vh ∈ Vh. Show the
result.
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Elliptic Regularity
Definition (H s Regularity)

Let m ≥ 1, Hm
0 (Ω) ⊆ V ⊆ Hm(Ω) and a(·, ·) a V -elliptic bilinear form.

The bilinear form a(u, v) = ⟨f , v⟩ for all v ∈ V is called Hs regular, if for
every f ∈ Hs−2m there exists a solution u ∈ H s(Ω) and we have with a
constant C (Ω, a, s),

Theorem (Elliptic Regularity (cf. Braess Thm. 7.2))

Let a be a H1
0 -elliptic bilinear form with sufficiently smooth coefficient

functions.
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Elliptic Regularity: Counterexamples
Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?
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Estimating the Error in the Energy Norm
Come up with an idea of a bound on ∥u − uh∥H1 .

What’s still to do?
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L2 Estimates
Let H be a Hilbert space with the norm ∥·∥H and the inner product ⟨·, ·⟩.
(Think: H = L2, V = H1.)

Theorem (Aubin-Nitsche)

Let V ⊆ H be a subspace that becomes a Hilbert space under the norm
∥·∥V . Let the embedding V → H be continuous. Then we have for the
finite element solution u ∈ Vh ⊂ V :

if with every g ∈ H we associate the unique (weak) solution φg of the
equation (also called the dual problem)
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Aubin-Nitsche: Proof
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L2 Estimates using Aubin-Nitsche

∥u − uh∥H ≤ c1 ∥u − uh∥V sup
g∈H

�
1

∥g∥H
inf

vh∈Vh

∥φg − vh∥V
�
,

If u ∈ H1
0 (Ω), what do we get from Aubin-Nitsche?

So does Aubin-Nitsche give us an L2 estimate?
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