W January 18: . Intro to the Course

- Scope, what to expect
- PIEs and somebasils

Iterative and Multigrid Methods
CS555 :: Spring 2023

- Class Time: Monday/Wednesday 11:00am-12:15pm Catalog
- Class Location: 1035 Campus Instructional Facility (CIF)
- Class Location: 1035 Campus Ins
- Slack: cs 555-s23
- Instructor: Luke Olson
- Office Hours: TBD

About the Course

Goal: Find $u \in V$ such that

$$
\mathcal{L}_{u}=f \text { in } \Omega \times[0, T]
$$

tinitial conditions
tboundary conditrous
Examph

$$
\begin{gathered}
\text { (1) }-\partial x x u=f \rightarrow \mathcal{L}=-\partial x x \\
\text { (2) } \frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0 \rightarrow \mathcal{L}=\frac{\partial}{\partial t}+a \frac{\partial}{\partial x} \\
\\
\\
\\
f=0
\end{gathered}
$$

Many Questions
Q What i Ω ? \square

Q What is V ?

$$
\begin{aligned}
& \tau \text { continuous? } \\
& \tau \text { smooth? } \\
& \tau \text { disc. } p \omega \text { cab? }
\end{aligned}
$$

Q What does $\frac{\partial}{\partial x}$ mean?
here.
here

Q Does a solution exist for

$$
\mathcal{L u}=f+I c+B C ?
$$

Generally, yes, we assume so.
$\{$ careful!
Q Is it unique?

* Pure Neccomann:

$$
\begin{gathered}
-\partial_{x x} u-\partial_{y y} u=f \\
n \cdot \nabla u \text { on }
\end{gathered}
$$

$$
\begin{aligned}
& -\partial \times u=f \\
& \partial x_{x} u=0 \\
& \text { ot } x=0,1
\end{aligned}
$$

(**
$n \cdot \nabla u$ on $\partial \Omega$

Q Can we fund the solution?
(1) For "model" problems, yes
(2) For real problems, no
(3) Often, we work back wards: a. define your own a ecg. $u=4 \sin (3 \pi x)+2$
b. drop into the PDE, let

$$
f=\mathcal{L}
$$

(2) need approximation methods

This course: approxinuting solutions
(0) some basios
(1) FD schewer
(2) FV scheur
(3) FE schenes

HW Roughk bi-weekly $\quad \rightarrow$ LaTeX \rightarrow Python
Projed will develop obes the semester

Resources:

Numerical Partial Differential Equations

James Adler
Tufts University
jadler.math.tufts.edu
Hans De Sterck
University of Waterloo uwaterloo.ca/scholar/hdesterc

Scott MacLachlan
Memorial University of Newfoundland
www.math.mun.ca/~smaclachlan

Luke Olson

University of Illinois Urbana-Champaign
lukeo.cs.illinois.edu
January 18, 2023

- Post this week
- Do not distribute

Definition 1.2: Order of a PDE

The order of a PDE is the order of the highest-order partial derivative present in the PDE.
For example, PDE

$$
\begin{equation*}
u_{x x}+u u_{y y}+u_{x}=f(x, y), \tag{1.6}
\end{equation*}
$$

is second-order, while

$$
\begin{equation*}
u_{t}+u_{x}=f(x, t), \tag{1.7}
\end{equation*}
$$

is first-order.

Definition 1.3: Quasi-Linear PDE

A nonlinear PDE in u in which the highest order partial derivatives appear linearly with coefficients only depending on the lower-order derivatives of u and the independent variables \boldsymbol{x}, is called a quasi-linear PDE.

For example, the PDE

$$
\begin{equation*}
x u^{2} u_{x x}+\left(u_{x}+y\right) u_{y y}+y u_{y}^{3}=f(x, y), \tag{1.8}
\end{equation*}
$$

is quasi-linear since $u_{x x}$ and $u_{y y}$ both appear linearly. Clearly, the PDE is nonlinear because of the u^{2} factor and the u_{x} and u_{y}^{3} terms.

Definition 1.4: Semi-Linear PDE

A nonlinear PDE is called semi-linear if it is quasi-linear and if the highest-order terms have coefficients that depend only on the independent variables \boldsymbol{x}.

For example, the following PDE is semi-linear:

$$
\begin{equation*}
(x+y+z) u_{x}+z^{2} u_{y}+\sin (x) u_{z}+u^{2}=f(x, y, z) . \tag{1.9}
\end{equation*}
$$

First order PDEs
Scalar u ($u(x)$ or $\omega(x, y, z))$
Firs) order consercutren (an:

$$
\begin{array}{r}
\frac{\partial u}{\partial t}+\nabla \cdot \frac{f}{\uparrow}(u)=0 \\
f_{u x}! \\
\quad \underline{f}(u)=\left[\begin{array}{l}
f(u) \\
g(u) \\
h(u)
\end{array}\right]
\end{array}
$$

(D)

$x=$ distance
$\rho(x, t)=$ density of gas.
mass of the gas in $\left[x_{1}, x_{2}\right]$ at time t

$$
=\int_{x_{1}}^{x_{2}} \rho(x, t) d x
$$

G change in aras is on k at the ends $v(x, t)=$ velocity of the gas
rate of flow (or flan of gas):

$$
\rho(x, t) v(x, t)
$$

change in mass

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{1}}^{x_{2}} \rho(x, t) d x= \rho\left(x_{1}, t\right) v\left(x_{1}, t\right) \\
& \text { inter rate: } t_{1} \rightarrow t_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\int_{x_{1}}^{x_{2}} \rho\left(x_{1}, t_{2}\right) d x-\int_{x_{1}}^{x_{2}} \rho\left(x_{1}, t_{1}\right) d x=\int_{t_{1}}^{t_{2}} \rho\left(x_{1}, t\right) v\left(x_{1}, t\right) d t} \\
& -\int_{t_{1}}^{t_{2}} \rho\left(x_{2}, t\right) v\left(x_{2}, t\right) d t \\
& =\int_{t_{1}}^{t_{2}} \int_{x_{1}}^{x_{2}} \frac{d}{\partial x}(\rho(x, t) v(x, t)) \\
& \rightarrow \rho_{t}+(\rho v)_{x}=0 \rightarrow \rho v=f(v) \\
& \rho_{t} t(f(v))_{x}=0
\end{aligned}
$$

$$
g_{t}+(f(g)) x=0
$$

Simple ferm $\quad u=$ concentrition

$$
\begin{gathered}
u_{t}+a u_{x}=0 \quad \text { (linear adve ctron) } \\
p_{\text {coustant }} \quad a>0
\end{gathered}
$$

Simplest fro:
let $u=$ concentration (density)
$u_{t}+a u_{x}=0$ (linear advection) $\uparrow_{\text {constant }} a>0$

Also wave equative:

$$
\frac{\partial^{2} u}{\partial t^{2}}-a^{2} \frac{\partial^{2} u}{\partial x}=\left(\frac{\partial}{\partial t}+a \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-a \frac{\partial}{\partial x}\right) u
$$

Take initial profile:

Think ubout a path $x(t)$ when a is constent: $\quad \frac{d u(x(t), t)}{V^{d t}}=0$

$$
\frac{\partial u}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial u}{\partial t}=0
$$

\rightarrow happens when $\frac{d x}{d t}=a$

$$
\rightarrow \underbrace{x(t)=x_{0}+a t}_{\text {define characheleristic }}
$$ curves.

if $u(x, 0)=g(x)$
then $u(x, t)=g(x-a t)$

Later, we'll look at hyperbolis conservatam laos,

$3:$
$a(x, y) u_{x x}+2 b(x, y) u_{x y}+c(x, y) u_{y y}+d(x, y) u_{x}+e(x, y) u_{y}+f(x, y) u=g(x, y)$,

	Criteria	Classification
(i)	$b^{2}-a c<0$	elliptic
(ii)	$b^{2}-a c=0$	parabolic
(iii)	$b^{2}-a c>0$	hyperbolic

Operator	Common name	Classification
$u_{x x}+u_{y y}$	2D Laplace operator	elliptic
$u_{t}-u_{x x}$	1D heat (or diffusion) operator	parabolic
$u_{t t}-u_{x x}$	1D wave operator	hyperbolic

Elliptir

- no chavacteristir divection 1 global

$$
\text { (BVP) } \quad\left\{\begin{array}{rll}
-\nabla \cdot \nabla u & =f(x) & \text { in } \Omega, \\
u & =g(x) & \text { on } \partial \Omega
\end{array}\right.
$$

Parabolic

$$
\begin{array}{rlrl}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}} & =0 & & \text { in }[0,1] \times[0, T] \\
u(x, 0) & =\sin (\pi x) & & \text { in }[0,1] \\
u(x, t) & =0 & & \text { at } x=0,1 \\
\longleftrightarrow u(x, t) & =e^{-\pi^{2} t} \sin (\pi x)
\end{array}
$$

Hyperbdiz

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x} \\
u(x, 0)=g(x)=\sin (x)
\end{gathered}
$$

