Next: two remaining "issues"
(1) systems of conservation laws
(2) 20,3D ?

Today: 2/22 systems.

General: $\quad u \in \mathbb{R}^{P}$ pterms

$$
\begin{aligned}
& \frac{d \underline{u}}{\partial t}+\nabla \cdot F(\underline{u})=0 \\
& \left.\uparrow \quad \begin{array}{ccc}
\text { dis sver "rowst" } \\
& p \times 3 & (3 D) \\
f(u) & g(u) & h(u \\
\mid & \mid & \mid
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { lIst look at ID: } \underline{u} \in \mathbb{R}^{P} \\
& \frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}
\end{aligned}=0 \quad \text { "conserkion form" }
$$

Definition 9.1: Hyperbolic system of conservation laws
The PDE system in the conservation law form of Equation (9.2) is called hyperbolic if the flux Jacobian $A(\boldsymbol{u}) \in \mathbb{R}^{p \times p}$ has p real eigenvalues and a full set of p linearly independent $\underbrace{\text { eigenvectors. }}$

$$
\begin{aligned}
\rightarrow p \text { eigenvalues } & \sim p \text { waves } \\
& \sim 叩 \text { characteristres }
\end{aligned}
$$

Simple case
let $\underline{f}(\underline{u})=A \underline{u}$
\rightarrow Assume hyper bolic
\rightarrow linewh idegentart eigenvectors ρ eijenvalues
\rightarrow diagonalizable
let $A R=R /$
Leigenvalues

$$
\begin{aligned}
& A R=R \Lambda \\
& R=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
r_{1} & r_{2} & \cdots & r_{p} \\
1 & 1 & & 1
\end{array}\right] \quad 1=\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \lambda_{2} & 0 \\
0 & \ddots & -\lambda_{p}
\end{array}\right] \\
& A=R \wedge R_{\uparrow}^{-1} \\
& =R \Delta L^{L}
\end{aligned}
$$

original problem:

$$
\sim\left(\begin{array}{c}
\frac{\partial \underline{u}}{\partial t}+A \frac{\partial u}{\partial x}=0 \\
\downarrow \\
\frac{\partial \underline{u}}{\partial t}+R \Lambda L \frac{\partial \underline{u}}{\partial x}=0 \\
\downarrow \\
\frac{\partial u}{\partial t}+1 L \frac{\partial \underline{u}}{\partial x}=0 \\
\underline{w}=\frac{L}{u} \downarrow \\
\frac{\partial \underline{w}}{\partial t}+1 \frac{\partial \underline{w}}{\partial x}=0
\end{array}\right.
$$

$$
\frac{\partial \underline{w}}{\partial t}+\frac{1}{q_{\text {diagonol }}} \frac{\partial w}{\partial x}=0
$$

$\Rightarrow p$ independnt eqwations:

$$
\frac{\partial w_{i}(x, t)}{\partial t}+\lambda \lambda_{i} \frac{\partial w_{i}(x, t)}{\partial x}=0
$$

\Rightarrow solution?

$$
w_{i}(x, t)=w_{i}^{(0)}\left(x-\lambda_{i} t\right)
$$

Tinitial data
W are called the eharacteristic variables

Also:

$$
\begin{aligned}
\therefore: \underline{w} & =R^{-1} u \\
\rightarrow \underline{u} & =\mathbb{R} \underline{w} \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
r_{1} & r_{2} & \cdots \\
1 & l & r_{p}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{p}
\end{array}\right] \\
& =\sum_{i=1}^{p} w_{i} r_{i} \\
& =\sum_{i=1}^{p} w_{i}^{(0)}\left(x-\lambda_{i} t\right) r_{i}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{t}+u_{x}+3 v_{x}=0 \\
v_{t}+3 u_{x}+v_{x}=0
\end{array}\right. \\
& \text { with } \underline{u}(x, 0)= \begin{cases}\underline{u}^{-} & x<0 \\
\underline{u}^{+} & x \geqslant 0\end{cases}
\end{aligned}
$$

$\underline{u}^{-}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$
$u^{+}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$
(1) write the problem in terms of W
(2) Drown the solutions in W
(3) write the solution in u
(4) Draw the solution in U

$$
\begin{aligned}
& u_{t}+\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right] \begin{array}{ll}
u_{x}=0 & \lambda=\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
\end{array} \\
& u^{-}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \quad u^{+}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \\
& A \rightarrow R=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad L=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

let $\underline{u}=R \underline{w}$

lookat the "juluy" in u :

$$
\begin{aligned}
& \Delta u=u^{+}-u^{-}=\left[\begin{array}{l}
1 \\
-3
\end{array}\right]-\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-3
\end{array}\right] \\
& \rightarrow \Delta w=L_{\Delta u}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
-4 \\
-2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\Delta u & =R \Delta w \\
& =\sum_{i=1}^{p=2} \Delta w_{i} r_{i} \\
& =\left[\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right](-4)+\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right](-2) \\
& =\sum_{i=1}^{2} \Delta u_{i} \\
x & \left.=\left[\begin{array}{c}
-2 \\
-2
\end{array}\right]_{+1}\right\}+\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

