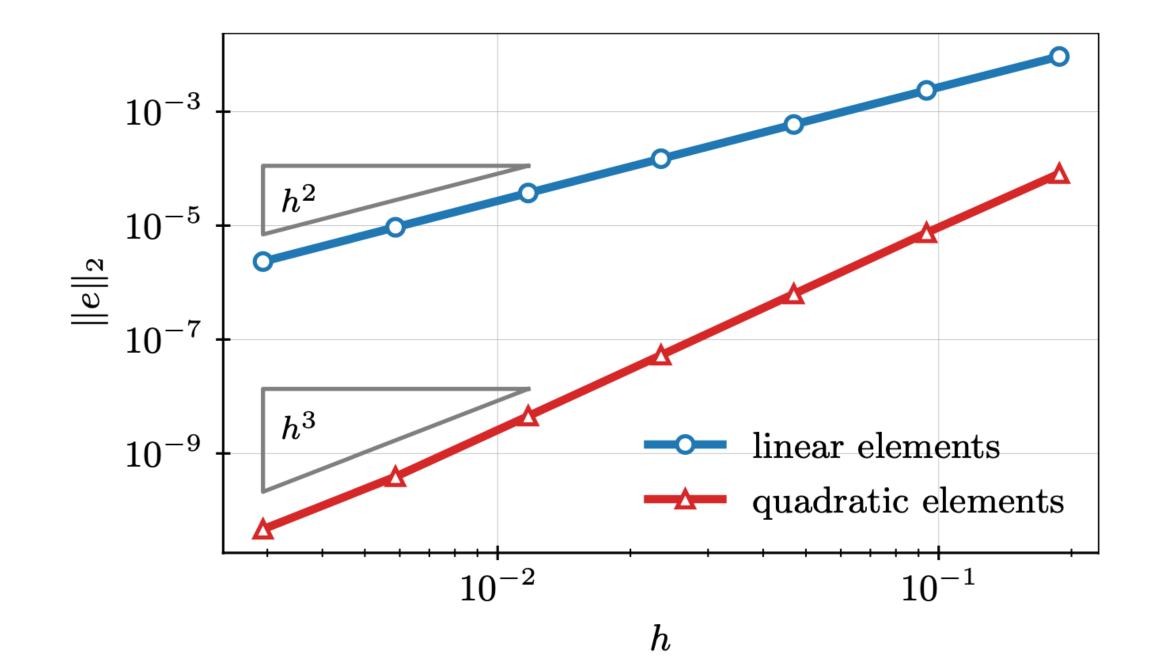
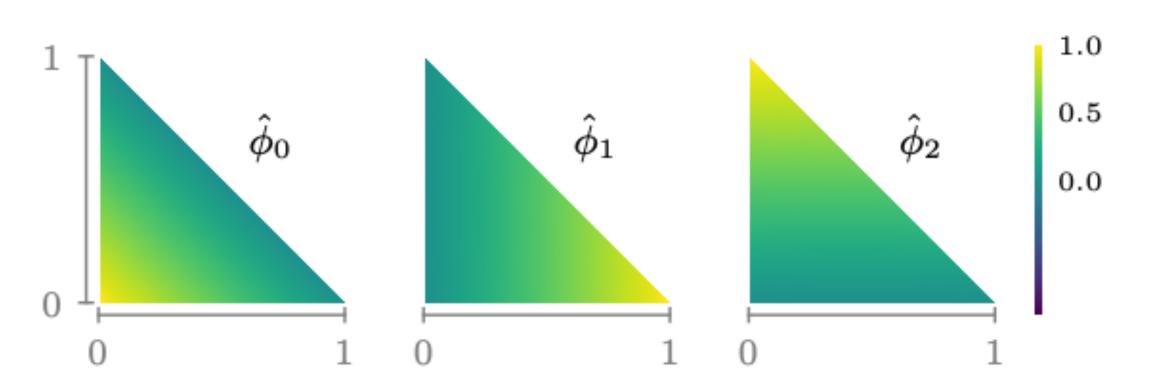
Lecture Plan

- Motivation
- Elements and Approximation Properties
- HW hints





$$\nabla \cdot \nabla u + u = f(x) \quad \text{for} \quad x \in \Omega$$
 with $u = 0 \text{ on } \partial \Omega$
$$f \in L^2(\Omega)$$

Strong form requiring a twice differentiable solution

Motivation

Solve PDEs numerically

$$\nabla \cdot \nabla u + u = f(x) \quad \text{for} \quad x \in \Omega$$
 with $u = 0 \text{ on } \partial \Omega$
$$f \in L^2(\Omega)$$

Strong form requiring a twice differentiable solution

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$
 for all $v \in V = H_0^1(\Omega)$

Weak form requiring a once differentiable solution

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$
 for all $v \in V = H_0^1(\Omega)$

Weak form requiring a once differentiable solution

Existence and uniqueness of a weak solution

- Riesz Representation Theorem
- Lax-Milgram Theorem

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$
for all $v \in V = H_0^1(\Omega)$

Infinite dimensional subspace consisting of functions with continuous first derivative and zero on the boundary

$$u_h \in \mathcal{V}^h \subset \mathcal{V}$$

The goal of this lecture is to construct \mathcal{V}^h such that it accurately represents \mathcal{V}

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$
for all $v \in V = H_0^1(\Omega)$

Infinite dimensional subspace consisting of functions with continuous first derivative and zero on the boundary

$$u_h \in \mathcal{V}^h \subset \mathcal{V}$$

The goal of this lecture is to construct \mathcal{V}^h such that it accurately represents \mathcal{V}

Types of Elements and Approximation Properties Section 8.3

Motivating questions

- How accurate is a solution from a finite-dimensional subspace ($\mathcal{V}^h \subset \mathcal{V}$)?
 - How do we choose \mathcal{V}^h ?
- What are the bounds on the error ($u u_h$)?
 - $\bullet \min_{u_h \in \mathcal{V}_h} ||u u_h||_{\mathcal{V}}$

How accurate is a solution from a finite-dimensional subspace?

Weak form

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$
for all $v \in V = H_0^1(\Omega)$

Bilinear+Linear forms

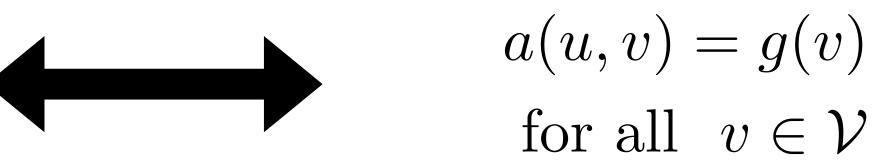
$$a(u,v) = g(v)$$
for all $v \in \mathcal{V}$

How accurate is a solution from a finite-dimensional subspace?

Weak form

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$
for all $v \in V = H_0^1(\Omega)$

Bilinear+Linear forms



Ritz-Galerkin Approximation

$$a(u^h, v^h) = g(v^h)$$
for all $v^h \in \mathcal{V}^h$

How accurate is a solution from a finite-dimensional subspace?

$$a(u, v) = g(v)$$
 $a(u^h, v^h) = g(v^h)$ for all $v \in \mathcal{V}$

We would like to understand the relationship between $u \in \mathcal{V}$ and $u^h \in \mathcal{V}^h$

How accurate is a solution from a finite-dimensional subspace?

$$a(u, v) = g(v)$$
 $a(u^h, v^h) = g(v^h)$
for all $v \in \mathcal{V}$ for all $v^h \in \mathcal{V}^h$

We would like to understand the relationship between $u \in \mathcal{V}$ and $u^h \in \mathcal{V}^h$

Orthogonality Relationship (Lemma 4.6)

Proof. Since u_h comes from the Ritz-Galerkin approximation, it must satisfy $a(u_h, v) = \langle f, v \rangle, \forall v \in \mathcal{V}^h$. Similarly, since u is the solution of the weak form, it must satisfy $a(u, v) = \langle f, v \rangle, \forall v \in \mathcal{V}$. Noting that $\mathcal{V}^h \subset \mathcal{V}$, this gives $a(u, v) = \langle f, v \rangle, \forall v \in \mathcal{V}^h$. Thus,

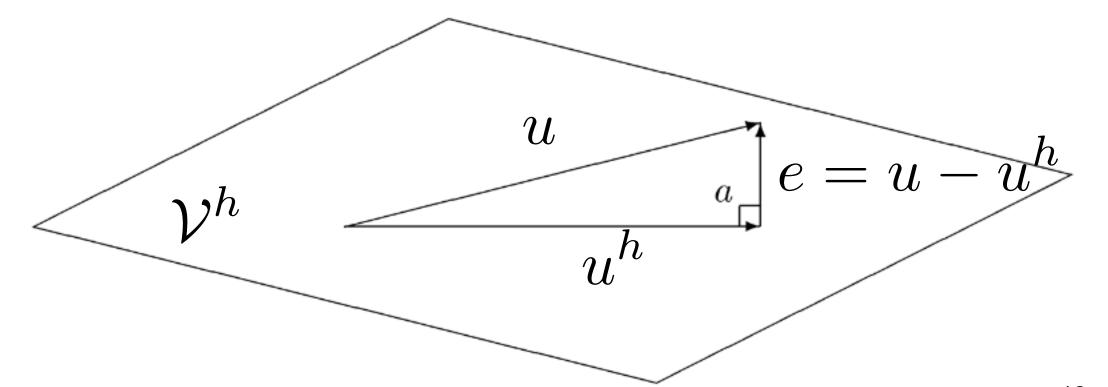
$$a(u-u_h,v)=a(u,v)-a(u_h,v)=\langle f,v\rangle-\langle f,v\rangle=0\quad \forall v\in \mathcal{V}^h.$$

How accurate is a solution from a finite-dimensional subspace?

Orthogonality Relationship (Lemma 4.6)

Proof. Since u_h comes from the Ritz-Galerkin approximation, it must satisfy $a(u_h, v) = \langle f, v \rangle, \forall v \in \mathcal{V}^h$. Similarly, since u is the solution of the weak form, it must satisfy $a(u, v) = \langle f, v \rangle, \forall v \in \mathcal{V}$. Noting that $\mathcal{V}^h \subset \mathcal{V}$, this gives $a(u, v) = \langle f, v \rangle, \forall v \in \mathcal{V}^h$. Thus,

$$a(u-u_h,v)=a(u,v)-a(u_h,v)=\langle f,v\rangle-\langle f,v\rangle=0 \quad \forall v\in \mathcal{V}^h.$$



Relationship between solution to weak form and Ritz-Galerkin approximation

How accurate is a solution from a finite-dimensional subspace?

Using the orthogonality property, we can show that the Ritz-Galerkin approximation generates the "best approximation" in the subspace

Lemma 8.28: Céa's lemma

Let $V \subset \mathcal{H}$ be a closed subspace of Hilbert space \mathcal{H} . Let $a(\cdot, \cdot)$ be a coercive and continuous bilinear form on V. In addition, for a bounded linear functional, $g(\cdot)$, on V, let $u \in V$ satisfy

$$a(u,v) = g(v)$$
 for all $v \in \mathcal{V}$. (8.62)

Consider the finite-dimensional subspace $V^h \subset V$ and $u^h \in V^h$ that satisfies

$$a(u^h, v^h) = g(v^h) \text{ for all } v^h \in \mathcal{V}^h. \tag{8.63}$$

Then,

$$||u - u^h||_{\mathcal{V}} \le \frac{c_1}{c_0} \min_{v^h \in \mathcal{V}^h} ||u - v^h||_{\mathcal{V}},$$
 (8.64)

where c_0 and c_1 are the coercivity and continuity constants for $a(\cdot, \cdot)$, respectively.

How accurate is a solution from a finite-dimensional subspace?

Prove that
$$||u - u^h||_{\mathcal{V}} \le \frac{c_1}{c_0} \min_{v^h \in \mathcal{V}^h} ||u - v^h||_{\mathcal{V}}$$

$$c_{0}\|u-u^{h}\|_{\mathcal{V}}^{2} \leq a(u-u^{h},u-u^{h}) \quad \text{by coercivity} \qquad \underline{c_{0}\|u\|_{\mathcal{V}}^{2} \leq a(u,u)} \quad \text{for all } u \in \mathcal{V}$$

$$= a(u-u^{h},\underline{u-v^{h}}) + a(u-u^{h},\underline{v^{h}-u^{h}}) \qquad \underline{\text{added } v^{h}-v^{h}}$$

$$= a(u-u^{h},u-v^{h}) \quad \text{since } v^{h}-u^{h} \in \mathcal{V}^{h}$$

$$\leq \underline{c_{1}\|u-u^{h}\|_{\mathcal{V}}\|u-v^{h}\|_{\mathcal{V}}} \quad \text{by continuity}, \qquad |a(u,v)| \leq \underline{c_{1}\|u\|_{\mathcal{V}}\|v\|_{\mathcal{V}}}$$

Shows how the solution of the weak form, \boldsymbol{u} , and

Ritz-Galerkin approximation, u^h , are related

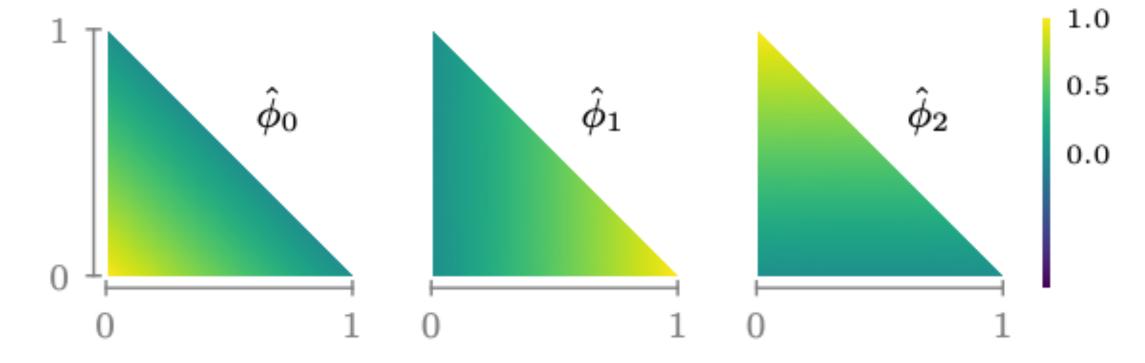
How accurate is a solution from a finite-dimensional subspace?

Cea's Lemma
$$||u-u^h||_{\mathcal{V}} \leq \frac{c_1}{c_0} \min_{v^h \in \mathcal{V}^h} ||u-v^h||_{\mathcal{V}}$$

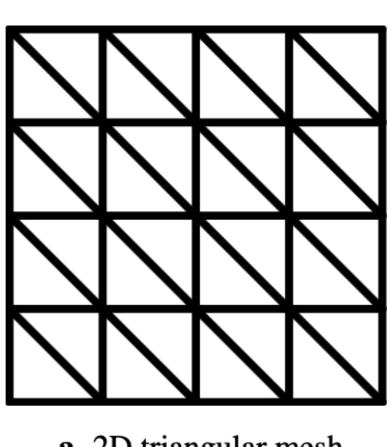
- Given that the $rac{c_1}{c_0}$ is not unacceptably large, how do we construct/find \mathcal{V}^h ?
- How large is the right-hand side?

It depends on the mesh chosen and the piecewise-polynomial approximation

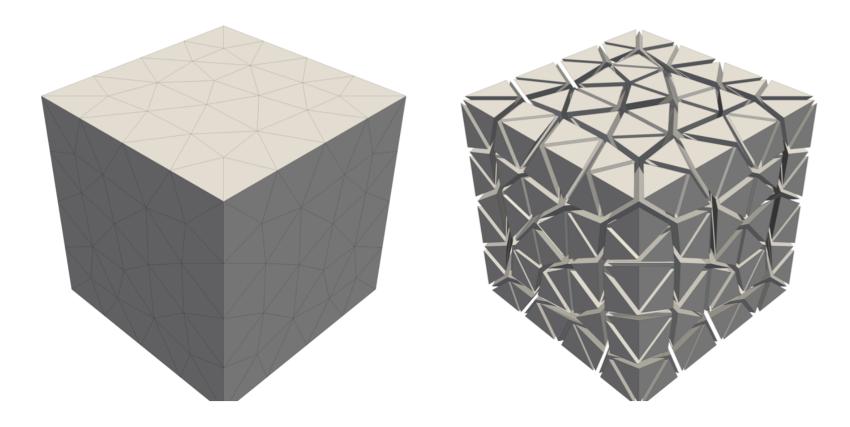
spaces over that mesh.



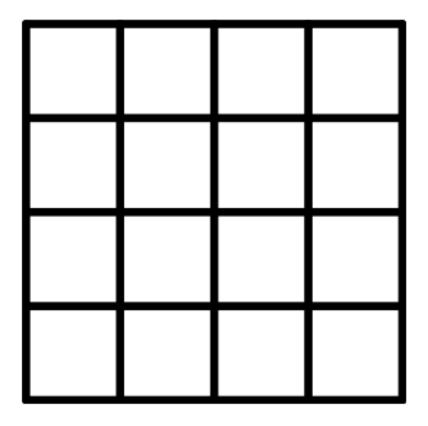
Meshes



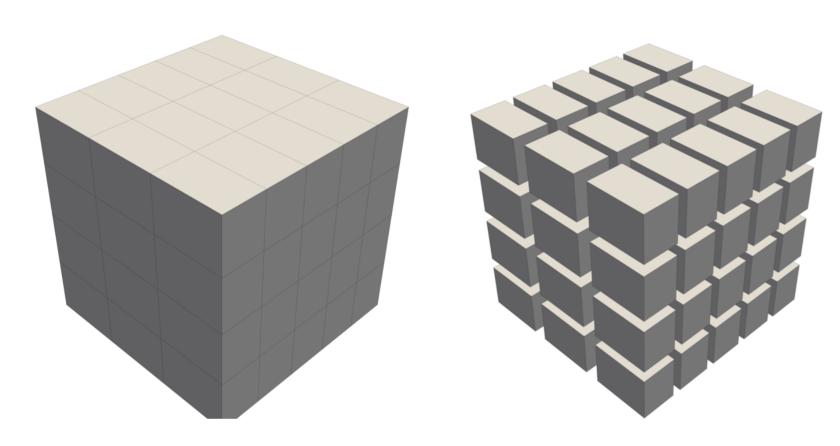
a. 2D triangular mesh



b. 3D tetrahedral mesh

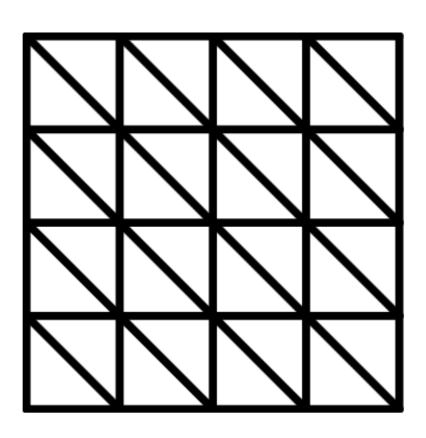


a. 2D quadrilateral mesh

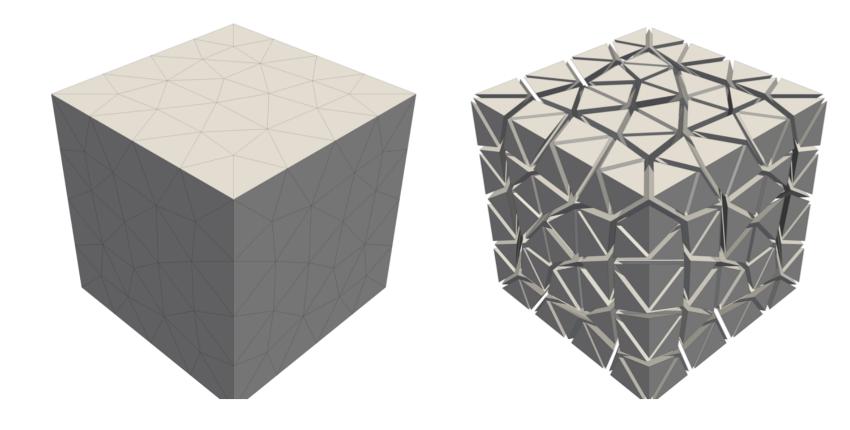


b. 3D hexahedral mesh

Triangular and Tetrahedral Elements, $P_{\boldsymbol{k}}$

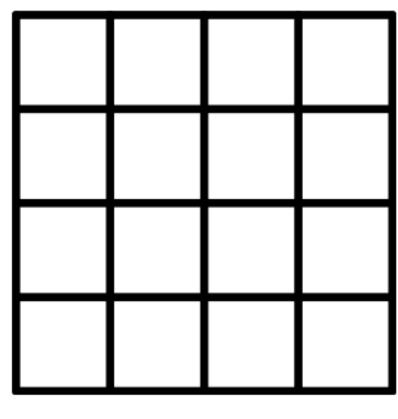


a. 2D triangular mesh

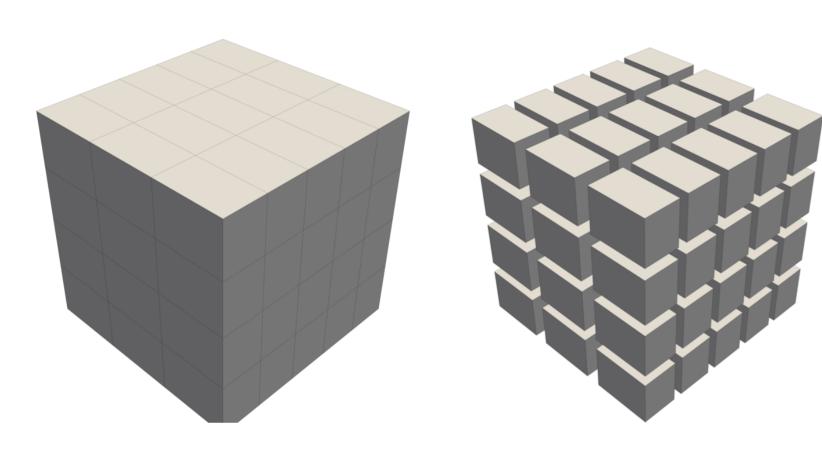


b. 3D tetrahedral mesh

Quadrilateral and hexahedral elements, \mathcal{Q}_k

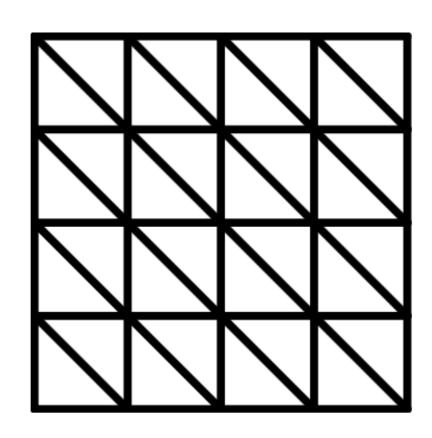


a. 2D quadrilateral mesh

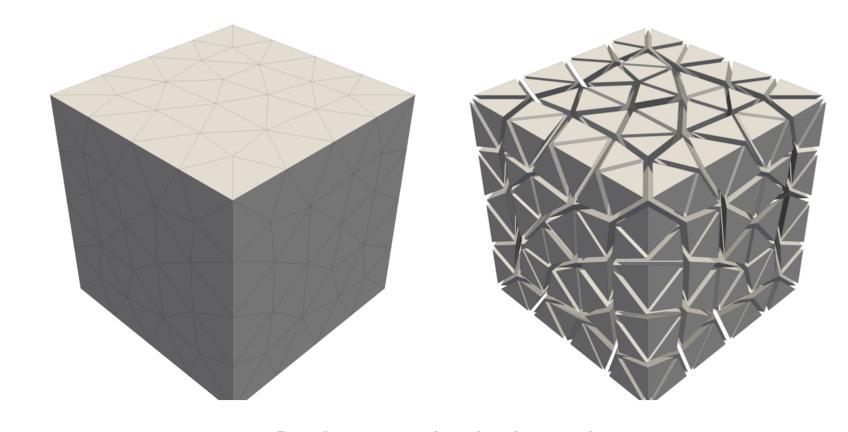


b. 3D hexahedral mesh

Triangular and Tetrahedral Elements, $P_{\overline{k}}$

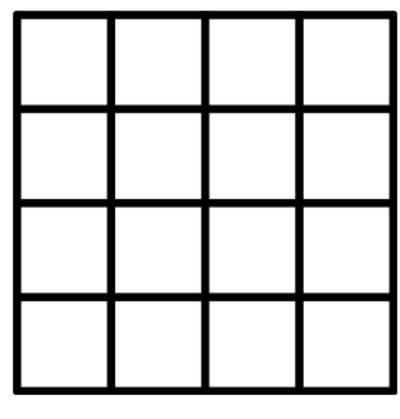


a. 2D triangular mesh

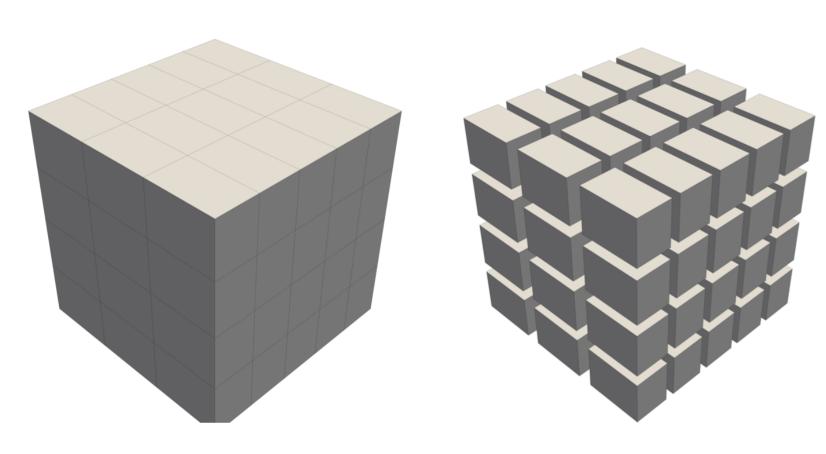


b. 3D tetrahedral mesh

Quadrilateral and hexahedral elements, \mathcal{Q}_{k}

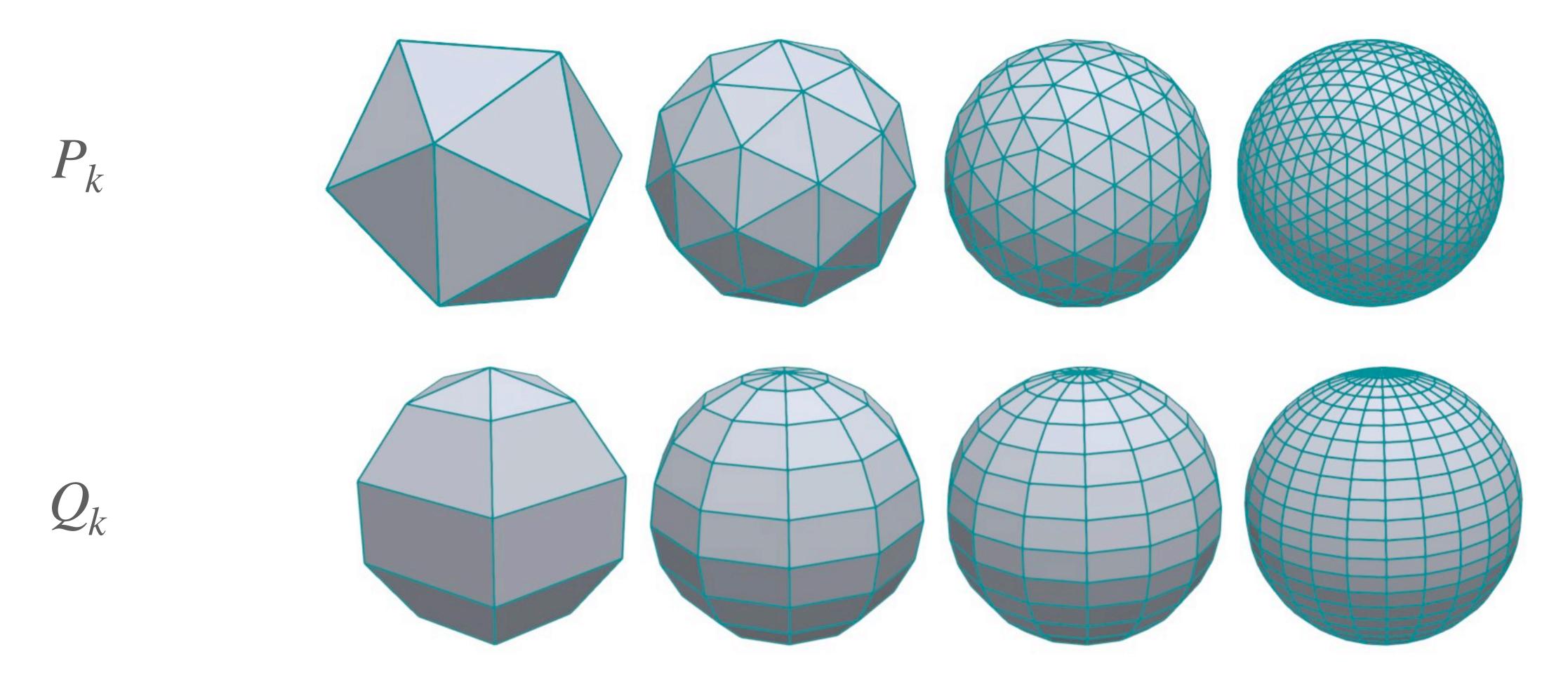


a. 2D quadrilateral mesh



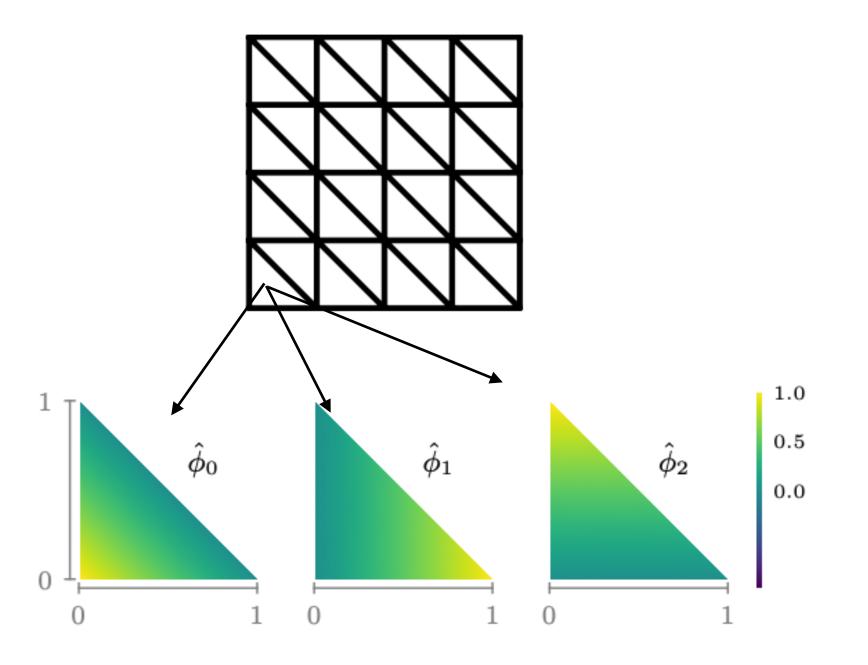
b. 3D hexahedral mesh

Given a sphere domain Ω subdivide it into elements forming a Ω^h



Triangular meshes on conforming polynomial spaces

- A triangular mesh, $\Omega^h = \{\tau\}$, is a set of triangles
- Once Ω^h is chosen, we can set an approximation space by defining
 - representations of functions over each τ
 - rules for how functions on one element relate to those on their neighbors (e.g. imposing continuity)



Triangular meshes on conforming polynomial spaces

Continuous polynomial spaces are called **conforming** and **discontinuous** are **non-conforming**

$$P_k(\Omega^h) = \left\{ v \in C^0(\Omega^h) \mid \forall \tau \in \Omega^h, v(\boldsymbol{x}) \text{ is a polynomial of degree no more than } k \text{ on } \tau \right\}$$

Triangular meshes on conforming polynomial spaces

Continuous polynomial spaces are called **conforming** and discontinuous are **non-conforming**

$$P_k(\Omega^h) = \left\{ v \in C^0(\Omega^h) \mid \forall \tau \in \Omega^h, v(\boldsymbol{x}) \text{ is a polynomial of degree no more than } k \text{ on } \tau \right\}$$

Examples:

- $P_{\underline{1}}(\Omega^h)$: piece-wise linear function over triangular elements
- $P_2(\Omega^h)$: piece-wise quadratic function over triangular elements

Triangular meshes on conforming polynomial spaces

Example 8.30: Piecewise Linears ($P_1(\Omega^h)$)

Take a triangle, τ , with three nodes, (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) , as shown in Figure 8.3.2. We define three basis functions over τ , written as

$$\phi_i(x,y) = a_i + b_i x + c_i y,$$

for i = 1, 2, 3, with the property that $\phi_i(x_j, y_j) = 1$ if i = j and $\phi_i(x_j, y_j) = 0$ if $i \neq j$ for j = 1, 2, 3. Writing this out, we have, for i = 1,

$$\phi_1(x_1, y_1) = a_1 + b_1 x_1 + c_1 y_1 = 1$$

$$\phi_1(x_2, y_2) = a_1 + b_1 x_2 + c_1 y_2 = 0$$

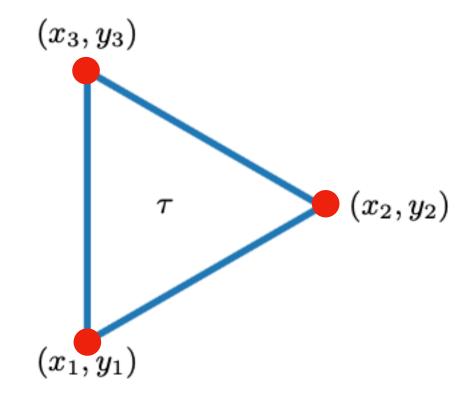
$$\phi_1(x_3, y_3) = a_1 + b_1 x_3 + c_1 y_3 = 0,$$

which leads to the linear system to be solved for a_1, b_1, c_1 as

$$\left[\begin{array}{ccc|c}1&x_1&y_1\\1&x_2&y_2\\1&x_3&y_3\end{array}\right]\left[\begin{array}{c}a_1\\b_1\\c_1\end{array}\right]=\left[\begin{array}{c}1\\0\\0\end{array}\right].$$

We know that the system will be uniquely solvable so long as the matrix is nonsingular, which occurs when its determinant is nonzero. From direct calculation,

$$\det \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix} = \det \begin{bmatrix} 1 & x_1 & y_1 \\ 0 & x_2 - x_1 & y_2 - y_1 \\ 0 & x_3 - x_1 & y_3 - y_1 \end{bmatrix} = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1).$$



Triangular meshes on conforming polynomial spaces

Example 8.30: Piecewise Linears ($P_1(\Omega^h)$)

Take a triangle, τ , with three nodes, (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) , as shown in Figure 8.3.2. We define three basis functions over τ , written as

$$\phi_i(x,y) = a_i + b_i x + c_i y,$$

for i=1,2,3, with the property that $\phi_i(x_j,y_j)=1$ if i=j and $\phi_i(x_j,y_j)=0$ if $i\neq j$ for j = 1, 2, 3. Writing this out, we have, for i = 1,

$$\phi_1(x_1, y_1) = a_1 + b_1 x_1 + c_1 y_1 = 1$$

$$\phi_1(x_2, y_2) = a_1 + b_1 x_2 + c_1 y_2 = 0$$

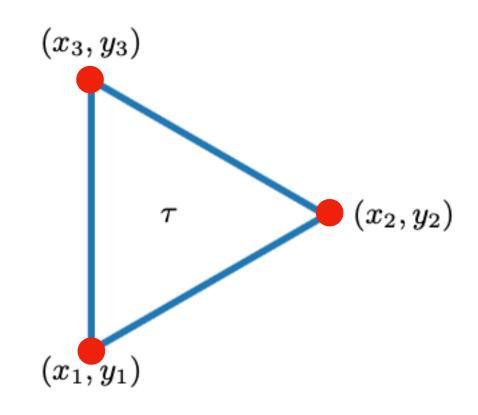
$$\phi_1(x_3, y_3) = a_1 + b_1 x_3 + c_1 y_3 = 0,$$

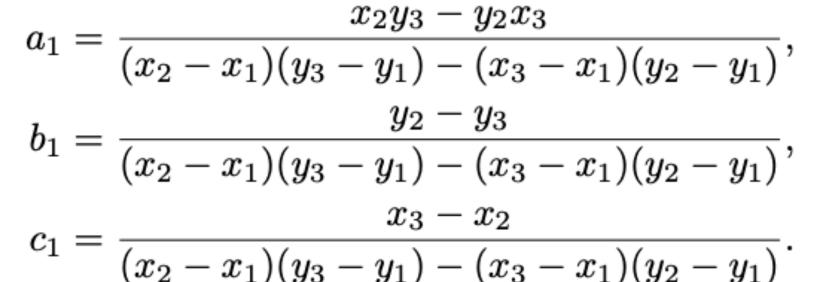
which leads to the linear system to be solved for a_1, b_1, c_1 as

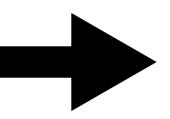
$$\left[\begin{array}{ccc|c}1&x_1&y_1\\1&x_2&y_2\\1&x_3&y_3\end{array}\right]\left[\begin{array}{c}a_1\\b_1\\c_1\end{array}\right]=\left[\begin{array}{c}1\\0\\0\end{array}\right].$$

We know that the system will be uniquely solvable so long as the matrix is nonsingular, which occurs when its determinant is nonzero. From direct calculation,

$$\det \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix} = \det \begin{bmatrix} 1 & x_1 & y_1 \\ 0 & x_2 - x_1 & y_2 - y_1 \\ 0 & x_3 - x_1 & y_3 - y_1 \end{bmatrix} = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1).$$

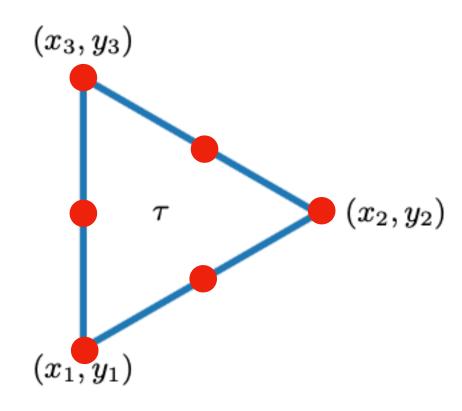






Triangular meshes on conforming polynomial spaces

HW#4: do the previous calculation for $P_2(\Omega^h)$



$$\phi_i(x,y) = a_i + b_i x + c_i y + d_i x^2 + e_i xy + f_i y^2$$

Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of $P_k(\Omega^h)$

Let $\{\Omega^h\}$ for $0 < h \le 1$ be a non-degenerate family of simplex meshes of a polyhedral domain, $\Omega \subset \mathbb{R}^n$. Let $\mathcal{V}^h = P_k(\Omega^h)$ with k+1-n/2 > 0 and a suitable choice of nodes for the degrees of freedom of $P_k(\Omega^h)$. Let I^h be such that $I^h w \in \mathcal{V}^h$ is the interpolant of $w \in C^0(\Omega)$. Then, there exists a constant, C, depending on the choice of nodes, n, k, and ρ such that if $u \in H^{k+1}(\Omega)$, then

$$\left(\sum_{\tau \in \Omega^h} \|u - I^h u\|_s^2\right)^{\frac{1}{2}} \le Ch^{k+1-s} |u|_{k+1},\tag{8.70}$$

for $0 \le s \le k + 1$.

Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of $P_k(\Omega^h)$

Let $V^h = P_k(\Omega^h)$ with k+1-n/2>0 and a suitable choice of nodes for the degrees of freedom of $P_k(\Omega^h)$. Let I^h be such that $I^hw \in V^h$ is the interpolant of $w \in C^0(\Omega)$. Then, there exists a constant, C, depending on the choice of nodes, n, k, and ρ such that if $u \in H^{k+1}(\Omega)$, then

$$||u - I^h u||_s \le Ch^{k+1-s}|u|_{k+1}$$
 (8.70)

for
$$0 \le s \le k + 1$$
.

Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of $P_k(\Omega^h)$

Let $V^h = P_k(\Omega^h)$ with k+1-n/2>0 and a suitable choice of nodes for the degrees of freedom of $P_k(\Omega^h)$. Let I^h be such that $I^hw \in V^h$ is the interpolant of $w \in C^0(\Omega)$. Then, there exists a constant, C, depending on the choice of nodes, n, k, and ρ such that if $u \in H^{k+1}(\Omega)$, then

$$I^h u = u^h$$

$$||u - I^h u||_s \le Ch^{k+1-s}|u|_{k+1}$$
 (8.70)

for
$$0 \le s \le k + 1$$
.

Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of $P_k(\Omega^h)$

Let $V^h = P_k(\Omega^h)$ with k+1-n/2>0 and a suitable choice of nodes for the degrees of freedom of $P_k(\Omega^h)$. Let I^h be such that $I^hw \in V^h$ is the interpolant of $w \in C^0(\Omega)$. Then, there exists a constant, C, depending on the choice of nodes, n, k, and ρ such that if $u \in H^{k+1}(\Omega)$, then

$$||u - I^{h}u||_{s} \le Ch^{k+1-s}|u|_{k+1}$$

$$||u||_{s} = \sum_{\alpha \le s} ||D^{\alpha}u||_{2} |u|_{p} = \left(\int_{\Omega} |u|^{p} \ dx\right)^{1/p}$$
(8.70)

 L^2 -based Sobolev norm

 L^p -norm

Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of $P_k(\Omega^h)$

Let $V^h = P_k(\Omega^h)$ with k+1-n/2>0 and a suitable choice of nodes for the degrees of freedom of $P_k(\Omega^h)$. Let I^h be such that $I^hw \in V^h$ is the interpolant of $w \in C^0(\Omega)$. Then, there exists a constant, C, depending on the choice of nodes, n, k, and ρ such that if $u \in H^{k+1}(\Omega)$, then

$$||u - I^h u||_s \le Ch^{k+1-s}|u|_{k+1}$$
 (8.70)

for
$$0 \le s \le k + 1$$
.

Example:
$$\mathcal{V}^h = P_1(\Omega^h)$$
 $s=0: \|u-I^hu\|_0 \leq Ch^2|u|_2,$ $u\in H^2(\Omega)$

$$0 \le s \le 2$$
 $s = 1: ||u - I^h u||_1 \le Ch|u|_2.$

Triangular meshes on conforming polynomial spaces

Accuracy of
$$P_k(\Omega^h)$$
: $||u-I^hu||_s \leq Ch^{k+1-s}|u|_{k+1}$

Example:
$$\mathcal{V}^h = P_1(\Omega^h)$$

$$u \in H^2(\Omega)$$

$$s = 0: ||u - I^h u||_0 \le Ch^2 |u|_2,$$

$$s=1: ||u-I^h u||_1 \le Ch|u|_2.$$

$$\mathcal{V}^h = P_2(\Omega^h)$$

$$u \in H^3(\Omega)$$

$$0 \le s \le 3$$

$$s = 0 : ||u - I^h u||_0 \le Ch^3 |u|_3,$$

$$s = 1 : ||u - I^h u||_1 \le Ch^2 |u|_3.$$

Triangular meshes on conforming polynomial spaces

Accuracy of
$$P_k(\Omega^h)$$
: $||u-I^hu||_s \leq Ch^{k+1-s}|u|_{k+1}$

Example:
$$\mathcal{V}^h = P_1(\Omega^h)$$

$$u \in H^2(\Omega)$$

$$0 \le s \le 2$$

$$s = 0: ||u - I^h u||_0 \le Ch^2 |u|_2,$$

$$s=1: ||u-I^h u||_1 \le Ch|u|_2.$$

$$\mathcal{V}^h = P_2(\Omega^h)$$
$$u \in H^3(\Omega)$$

$$0 \le s \le 3$$

$$s = 0: \|u - I^h u\|_0 \le Ch^3 |u|_3$$

$$s = 1 : ||u - I^h u||_1 \le Ch^2 |u|_3.$$

Combine Cea's Lemma with the accuracy of $P_k(\Omega^h)$ estimate

Cea's Lemma for
$$P_k(\Omega^h)$$
: $||u-u^h||_k \leq \frac{c_1}{c_0} \min_{u_h \in P_k(\Omega^h)} ||u-u_h||_k$

$$\mathcal{V}^{H} = P_{1}(\Omega^{h})$$

$$u \in H^{2}(\Omega)$$

$$s = 1 : \|u - I^{h}u\|_{1} \le Ch|u|_{2}$$

0 < s < 2

Combine Cea's Lemma with the accuracy of $P_k(\Omega^h)$ estimate

Cea's Lemma for
$$P_k(\Omega^h)$$
 : $||u-u^h||_k \le \frac{c_1}{c_0} \min_{u_h \in P_k(\Omega^h)} ||u-u_h||_k$

$$\mathcal{V}^{H} = P_1(\Omega^h)$$

$$u \in H^2(\Omega)$$

$$s = 1 : \| u - I^h u \|_1 \le Ch|u|_2$$

$$\|u - u^h\|_1 \leq \frac{c_1}{c_0} \min_{\substack{v^h \in P_1(\Omega^h)}} \|u - v^h\|_1$$
 \(\sim \text{Theorem 8.33}\)

0 < s < 2

Combine Cea's Lemma with the accuracy of $P_k(\Omega^h)$ estimate

Cea's Lemma for
$$P_k(\Omega^h)$$
: $||u-u^h||_k \leq \frac{c_1}{c_0} \min_{u_h \in P_k(\Omega^h)} ||u-u_h||_k$

$$\mathcal{V}^{H} = P_{1}(\Omega^{h})$$

$$u \in H^{2}(\Omega)$$

$$s = 1 : \|u - I^{h}u\|_{1} \le Ch|u|_{2}$$

$$\|u-u^h\|_1 \leq \frac{c_1}{c_0} \min_{v^h \in P_1(\Omega^h)} \|u-v^h\|_1 \leq Ch|u|_2$$

$$Céa's lemma$$
Theorem 8.33

0 < s < 2

Aubin-Nitsche duality argument: $||u-u^h||_0 \le Ch^2|u|_2$ (Theorem 4.9)

Combine Cea's Lemma with the accuracy of $P_k(\Omega^h)$ estimate

Let's verify that we get the expected accuracy in practice

$$-\nabla \cdot \nabla u = f(x) \text{ for } x \in \Omega = [-1, 1]^2,$$

 $u = 0 \text{ on } \partial \Omega.$

Choosing a test problem, where the solution is of the form

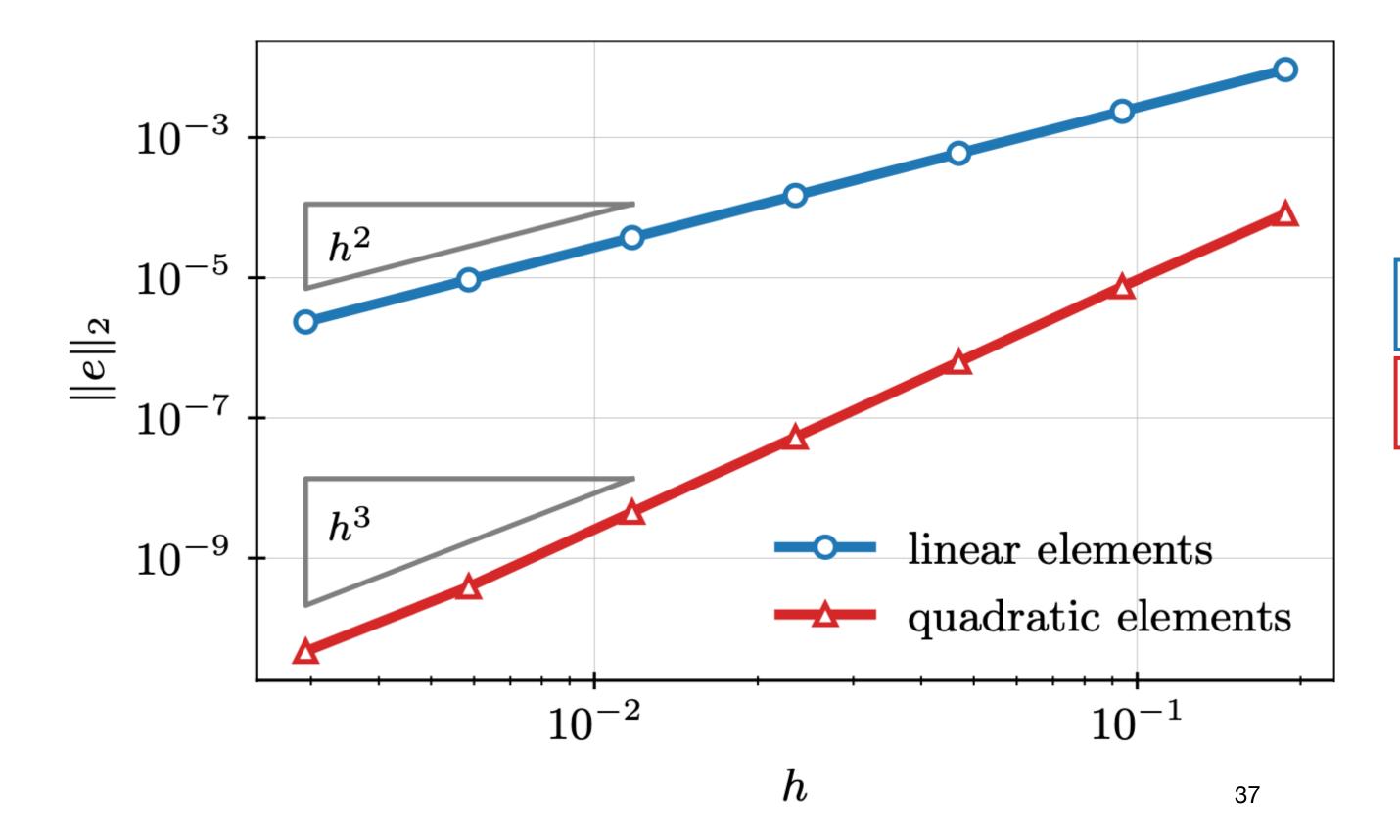
$$u(\boldsymbol{x}) = \sin\left(\pi \frac{x-1}{2}\right)\cos(\pi y),$$

yields a forcing function,

$$f(\boldsymbol{x}) = \frac{5}{4}\pi^2 \sin\left(\pi \frac{x-1}{2}\right) \cos(\pi y).$$

Combine Cea's Lemma with the accuracy of $P_k(\Omega^h)$ estimate

Let's verify that we get the expected accuracy in practice



$$||u-u^h||_0 \le Ch^2|u|_2$$
 for $P_1(\Omega^h)$ elements $||u-u^h||_0 \le Ch^3|u|_3$ for $P_2(\Omega^h)$ elements

Quadrilateral meshes on conforming polynomial spaces

$$Q_k(\Omega^h) = \{v \in C^0(\Omega^h) | \forall \tau \in \Omega^h, v(\boldsymbol{x}) \text{ is a polynomial with possible terms } x^{\alpha}y^{\beta} \}$$
 for $\max(\alpha, \beta) \leq k \text{ on } \tau\}$

$$Q_1(\Omega^h)$$

$$Q_{1}(\Omega^{h})$$

$$\phi_{i}(x,y) = a_{i} + b_{i}x + c_{i}y + d_{i}x_{i}y_{i}$$

$$\begin{bmatrix} 1 & x_{1} & y_{1} & x_{1}y_{1} \\ 1 & x_{2} & y_{2} & x_{2}y_{2} \\ 1 & x_{3} & y_{3} & x_{3}y_{3} \\ 1 & x_{4} & y_{4} & x_{4}y_{4} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$