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Motivation

Solve PDEs numerically

V-Vu+u= f(x) for xz &)
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Motivation

Solve PDEs numerically

/Qvu Vv dr /Q wo dz = /va ax Weak form requiring a once
for all veV = HNN) differentiable solution

Existence and uniqgueness of a weak solution
* Riesz Representation Theorem

 [ax-Milgram Theorem
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/ Vu- Vo dr +/ wo dr = / fo dr Infinite dimensional subspace
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for all v eV = H;(Q) first derivative and zero on the boundary

The goal of this lecture is to construct V"

h
up € V- CV such that it accurately represents V
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Solve PDEs numerically

/ Vu-Vou dr +/ wo dr = / fo dr Infinite dimensional subspace consisting
L 2 L of functions with continuous first

forall veV =Hj(Q)  derivative and zero on the boundary

The goal of this lecture is to construct V"

h
up € V- CV such that it accurately represents V



Types of Elements and Approximation Properties
Section 8.3

Motivating questions
» How accurate is a solution from a finite-dimensional subspace (V" c V)?
* How do we choose V"*?

 What are the bounds on the error (u — up)?

+ Iin fju—uplly



Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

Weak form Bilinear+Linear forms

/QVu-Vv dx—l—/ﬂuv dx:/va dx l ' a(u,v) = g(v)

for all veV:Hé(Q) for all ve&V



Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

Weak form Bilinear+Linear forms

/QVu-Vv dx—l—/ﬂuv dx:/va dx l ' a(u,v) = g(v)

for all veV:Hé(Q) for all ve&V

Ritz-Galerkin Approximation

a(uhv Uh) — g(vh)

for all v € V"



Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

a(u,v) = g(v) a(u”,v") = g(v")

for all v &€V for all v" e V"

We would like to understand the relationship between v € V and u" € V"
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Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

a(u,v) = g(v) a(u”,v") = g(v")

for all v &€V for all v" e V"

We would like to understand the relationship between v € V| and w" € V"

Orthogonality Relationship (Lemma 4.6)

Proof. Since u; comes from the Ritz-Galerkin approximation, it must satisfy a(u,v)
(f,v),Yv € V", Similarly, since u is the solution of the weak form, it must satisfy a(u,v)
(f,v),Vv € V. Noting that V* C V, this gives a(u,v) = (f,v), Vv € V. Thus,

a(u —up, v) = a(u,v) —a(up,v)|= (f,v) — (f,v)=0 Yo e V"
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Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

Orthogonality Relationship (Lemma 4.6)

Proof. Since u; comes from the Ritz-Galerkin approximation, it must satisfy a(u,v)
(f,v),Yv € V". Similarly, since u is the solution of the weak form, it must satisfy a(u, v)

(f,v),Vv € V. Noting that V* C V, this gives a(u,v) = (f,v), Vv € V". Thus,

a(u —up,v) =la(u,v) —a(uy,v) = (f,v) — (f,v) =0 Yo e V"

Relationship between solution to
weak form and Ritz-Galerkin
approximation
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Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

Using the orthogonality property, we can show that the Ritz-Galerkin
approximation generates the “best approximation” in the subspace

Lemma 8.28: Céa’s lemma

Let YV C H be a closed subspace of Hilbert space H. Let a(-, ) be a coercive and continuous
bilinear form on V. In addition, for a bounded linear functional, g(-), on V, let u € V satisfy

a(u,v) = g(v) forallv € V. (8.62)

Consider the finite-dimensional subspace V" C V and u" € V" that satisfies

a(u,v™) = g(v™) for all v € V™. (8.63)
Then, .
|lu—u"ly < = min |ju— "y, (8.64)
CO ,vhevh

where cy and c, are the coercivity and continuity constants for a(-, -), respectively.
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Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

Prove that [u —u"|y < = min |ju— "y
O ,vhevh
collu —u"||3 < a(u —u",u —u™) by coercivity collully, < a(u,w) forallue V

h ph — yh)

(
a(u —u",u—v") +a(u—u",v added o — o"
a(

a(u —u",u —v") since v —u" € V"

c1]lu — u™||y||lu — v™||y by continuity, a(u,v)| < alully|v|ly

VAN

Shows how the solution of the weak form, ©, and

h

Ritz-Galerkin approximation, « ', are related



Types of Elements and Approximation Properties
How accurate is a solution from a finite-dimensional subspace?

Cea’s Lemma lu —u"|y < "L min lu — o™y
Co vheVh
C1
* Given that the co is not unacceptably large, how do we construct/find V" ?

 How large is the right-hand side?

It depends on the mesh chosen and the piecewise-polynomial approximation
spaces over that mesh.

1 1.0

. 0 1 0 1 0 1



Types of Elements and Approximation Properties
Meshes

a. 2D triangular mesh b. 3D tetrahedral mesh

a. 2D quadrilateral mesh b. 3D hexahedral mesh
16




Types of Elements and Approximation Properties
Meshes

Triangular and Tetrahedral
Elements, P,

a. 2D triangular mesh b. 3D tetrahedral mesh

Quadrilateral and hexahedral
elements, O,

a. 2D quadnlateral mesh b. 3D hexahedral mesh




Types of Elements and Approximation Properties
Meshes

Triangular and Tetrahedral
Elements,

a. 2D triangular mesh b. 3D tetrahedral mesh

Quadrilateral and hexahedral
elements, O,

a. 2D quadnlateral mesh b. 3D hexahedral mesh




Types of Elements and Approximation Properties
Given a sphere domain  subdivide it into elements forming a Q"

https://www.danielsieger.com/blog/2021/03/27/generating-spheres.html "



Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

* A triangular mesh, Q" = {7} ,is a set of triangles

» Once Q" is chosen, we can set an approximation
space by defining

e representations of functions over each 7

e rules for how functions on one element relate to
those on their neighbors (e.g. imposing
continuity)
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Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Continuous polynomial spaces are called conforming and discontinuous are
non-conforming

P(Q") = {v e C°(Q") | VT € (" v(x) is a polynomial of degree no more than k on 7}

21



Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Continuous polynomial spaces are called conforming and discontinuous are
non-conforming

P,(Q") = {v e C°(Q") | VT € (" v(x) is a polynomial of degree no more than k on 7}

Examples:

 P1(Q2") : piece-wise linear function over triangular elements

* P,(Q") : piece-wise quadratic function over triangular elements

22



Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Example 8.30: Piecewise Linears (P, (Q"))

Take a triangle, 7, with three nodes, (z1,1), (z2,¥y2), and (z3,y3), as shown in Figure 8.3.2. (23, 93)
We define three basis functions over 7, written as
¢i(z,y) = a; + biz + ¢y,
(332,?/2)
for ¢ = 1,2, 3, with the property that ¢;(z;,y;) = 1ifi = j and ¢;(z;,y;) = 0if ¢ # j for
7 = 1,2, 3. Writing this out, we have, forz = 1,
</>1($1,yl) =a; +biz1 +c1y1 =1 (1, Y1)

¢1($2,yz) =a; +bizo+c1y2 =0
<f>1(333> y3) =a; + bz +c1ys =0,

which leads to the linear system to be solved for a1, by, ¢y as

1 oz oy | [ ar 1 ]
1 zo2 o by | =1 0O
1 z3 ys | [ a1 0]

We know that the system will be uniquely solvable so long as the matrix is nonsingular, which
occurs when its determinant is nonzero. From direct calculation,

1 I Y1 1 I1 Y1
det | 1 2o yo | =det| 0 2zo—21 y2o—y1 | = (w2—21)(y3—v1)—(T3—21)(Y2—V1).
1 z3 ys 0 zz3—21 ys—y1 -




Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Example 8.30: Piecewise Linears (P, (Q"))

Take a triangle, 7, with three nodes, (z1,1), (z2,¥y2), and (z3,y3), as shown in Figure 8.3.2. (23, 93)
We define three basis functions over 7, written as
¢i(z,y) = a; + biz + ¢y,
(372) y2)
for ¢ = 1,2, 3, with the property that ¢;(z;,y;) = 1ifi = j and ¢;(z;,y;) = 0if ¢ # j for
7 = 1,2, 3. Writing this out, we have, forz = 1,
d>1(a31,y1) =a; +biz1 +c1y1 =1 (1, Y1)

¢1(5U2,y2) =a; +bizo+c1y2 =0
¢1(5L’3> y3) =a; + bz +c1ys =0,

which leads to the linear system to be solved for a1, by, ¢y as

1 oz oy | [ ar 1 ]
1 zo o by | =1 O
1 I3 Y3 C1 O

) S T2Y3 — Y2I3

We know that the system will be uniquely solvable so long as the matrix is nonsingular, which a1 = (xe —z1)(y3s —y1) — (3 — 21)(y2 — Y1) ’
occurs when its determinant is nonzero. From direct calculation, Yo — U3
- - - - bl — )
1 z1 1 1 T1 Y1 » (332 — xl)(?JB — Y1) — (373 - wl)(y2 — ?!1)
det | 1 =z yo | =det| 0 z2—21 y2—u1 | = (z2—21)(¥3—y1)—(T3—21)(Y2—¥1)- o — T3 — T2
1oz ys |0 Z3 -1 ys—y1 24 ) 1 (T2 —z1)(y3 — 1) — (3 —21)(y2 —y1)




Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

HW#4: do the previous calculation for P»(Q")

$i(z,y) = a; +bix+ciy+di ¥ +e;xy + fi y

25



Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of P;(Q")

Let {Q"} for 0 < h < 1 be a non-degenerate family of simplex meshes of a polyhedral domain,
Q C R™ Let V' = P,(Q") with k +1 — n/2 > 0 and a suitable choice of nodes for the
degrees of freedom of P, (). Let I" be such that I"w € V" is the interpolant of w € C°(Q).

Then, there exists a constant, C, depending on the choice of nodes, n, k, and p such that if
u € H*TH(Q), then

(Z u—fhug) < CR* %l 41, (8.70)

TENh

for0 < s< k+1.
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Types of Elements and Approximation Properties

Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of P;(Q")

Let V" = P (2") with k + 1 — n/2 > 0 and a suitable choice of nodes for the

degrees of freedom of P, (Q2"). Let I" be such that I"w € V" is the interpolant of w € C°(Q).
Then, there exists a constant, C, depending on the choice of nodes, n, k, and p such that if

uw € HH(Q) then

Ju— I"ul|, < Ch¥ T uly

for0 < s< k+1.

. (8.70)
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Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of P;(Q")

Let V" = P(Q") withk + 1 — n/2 > 0 and a suitable choice of nodes for the

degrees of freedom of P,(Q"). Let I" be such that I"w € V" is the interpolant of w € C°(Q2).  Jhqy, — P
Then, there exists a constant, C, depending on the choice of nodes, n, k, and p such that if
uw € H*T1(Q), then

w— I"ul|. < Ch* % |ulpaq (8.70)
S

for0 < s< k+1.
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Types of Elements and Approximation Properties

Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of P;(Q")

Let V" = Pr(Q") with k +1 — n/2 > 0 and a suitable choice of nodes for the

degrees of freedom of P, (). Let I" be such that I"w € V" is the interpolant of w € C°(Q).
Then, there exists a constant, C, depending on the choice of nodes, n, k, and p such that if

uw € H*T1(Q), then

Ju— I"ull, < Ch¥ T uly

for0 < s< k+1.

, (8.70)

1/p
Wl =SS0l [l = (] fup e

a<s

L*-based Sobolev norm 5 LP-norm



Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Theorem 8.33: Accuracy of P;(Q")

Let V" = P, (Q") withk + 1 — n/2 > 0 and a suitable choice of nodes for the
degrees of freedom of P, (). Let I" be such that I"w € V" is the interpolant of w € C°(Q).
Then, there exists a constant, C, depending on the choice of nodes, n, k, and p such that if

u € H*TH(Q), then

lu — I"u|], < Ch* % |u|pqq (8.70)
for0 < s< k+1.
Example: V" = P (Q") s=0: ||lu—TI"ul|o < Ch*|uls,
uw € H?(Q)

0 <s<2 s=1: |lu—I"ul|; < Chluls.
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Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Accuracy of P, (") : lu — I'"ul|, < CR* T 5wl
Example: Yh — Pl(Qh) s =20: Hu — IhUHO < Ch2\u|2,
uw € H*(Q)
0<s<2 s=1: |lu—I"ul|; < Chluls.
Vh ( ) S:O: ’U,—Ih’UJQSChB’UJg,
UEHB() s=1": u—IhulgChQ'u,g.




Types of Elements and Approximation Properties
Triangular meshes on conforming polynomial spaces

Accuracy of P, (") : lu — I'"ul|, < CR* T 5wl
Example: Yh — Pl(Qh) s =20: Hu— IhUHO < Ch2\u|2,
uw € H*(Q)
0<s<2 s=1: |lu—I"ul|; < Chluls.
Vh ( ) s =20: U—IhUQSChBU;g,
UEHB() s=1": u—IhulgChQ'u,g.
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Types of Elements and Approximation Properties
Combine Cea’s Lemma with the accuracy of P.(92")estimate

Cea’s Lemma for Pu(Q") : [lu—u"|[, <= min |ju— uslls
C() uhEPk(Qh)
Vi = P Q")
u e H2(Q) s=1:|lu—I"ull; < Chlul,

0<s<?2

33



Types of Elements and Approximation Properties
Combine Cea’s Lemma with the accuracy of P.(92")estimate

Cea’s Lemma for Pu(Q") : [lu—u"|[, <= min |ju— uslls
C() uhEPk(Qh)
Vi = p Q")
u e H*(Q) s=1:[lu—I"ully < Chluls
D0<s<?2

lu—ut, < =

< min |lu — 0"y < Chluls
Co vheP(Qh) N e’
N e——  p—— Theorem 8.33

Céa’s lemma
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Types of Elements and Approximation Properties
Combine Cea’s Lemma with the accuracy of P.(92")estimate

Cea’s Lemma for Py(Q") @ |ju—u"||x < o ain lu — up|x
C() uhEPk(Qh)
Vi = p Q")
we H2(Q) s=1:|lu—I"ul; < Chlul,
D0<s<?2
lu—uty < =2 min fu—o"y < Chluls
CO ’UhEPl(Qh) \_\/_/

e e—— p— Theorem 8.33

Céa’s lemma

Aubin-Nitsche duality argument: 1, _ /2|0 < Ch2|u]s
(Theorem 4.9) %



Types of Elements and Approximation Properties
Combine Cea’s Lemma with the accuracy of P.(92")estimate

Let’s verity that we get the expected accuracy Iin practice

—V - Vu = f((L') forx € () = [_17 1]2)
© = 0 on 0Of).

Choosing a test problem, where the solution 1s of the form

u(x) = sin (w“’ _ 1) cos(ry),

yields a forcing function,

f(x) = Zﬂ'z sin (wx ; 1) cos(my).
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Types of Elements and Approximation Properties

Combine Cea’s Lemma with the accuracy of P.(2")estimate

Let’s verity that we get the expected accuracy Iin practice

==O== ]inear elements

==fy==quadratic elements

lu —u"|lo < Ch?|ulz for P; (") elements

lu —u"|lo < Ch?|uls for Py(Q") elements

101
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Types of Elements and Approximation Properties
Quadrilateral meshes on conforming polynomial spaces

Qr(Q") = {v - CO(Qh)|‘v’T c Q" v(x) is a polynomial with possible terms z*y”
for max(a, ) < k on 7}

Ql(ﬂh) di(x,y) = a; + bijx + c;y + d;z;y;

1 1 y1 T1y1| |a 1
1 xo yo w2y2| [
1 3 y3 x3ys| |c
1 x4 ysa waya| |d

0
0
_()_



