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Conservation laws
Goal: Solve conservation laws on bounded domain Ω ⊂ Rn:

qt +∇ · F (q) = 0

Example: Maxwell’s Equations

∂tD −∇× H = −j , ∂tB +∇× E = 0,
∇ · D = ρ, ∇ · B = 0.

What do we do with the divergence constraints?
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Rewriting Maxwell’s
Let q = (Dx ,Dy ,Dz ,Bx ,By ,Bz)

T . Consider D = ϵE and B = µH .

∂tD −∇× H = −0, ∂tB +∇× E = 0.

Assume ϵ, µ constant. Rewrite in conservation law form: q t +∇ ·F (q) = 0

Could we also define q = (Ex ,Ey ,Ez ,Hx ,Hy ,Hz)
T ?
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Solving qt + aqx = 0: Finite Differences

D−
t + aD−

x = 0

D+
t f :=

f (t +∆t)− f (t)

∆t
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Solving qt + aqx = 0: Finite Volume

q̄k :=

Z (k+1/2)∆x

(k−1/2)∆x
q(x)dx

∆x∂t q̄k+f k+1/2−f k−1/2 = 0

f k±1/2: flux “reconstructions”
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Solving qt + aqx = 0: Finite Elements

Z

Ω
qNt ϕ+ aqNx ϕdx = 0

for ϕ in a test space.
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Do we really want high order?
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Figure from talk by Jan Hesthaven

Time to compute solution at 5%
error

Big assumption?
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Summarizing

Want flexibility of finite elements without the drawbacks.
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Developing the Scheme

Ω

Em

What do do about unbounded domains?
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Dealing with the Mesh, Part I
For each cell Ek , find a ref-to-global map Tk :

Ê Ek

Tk

Tk : Ê → Ek

x = (x , y , z) = Tk(r , s, t) = Tk(r)

▶ Tk affine for straight-sided simplices: Tk(r) = Ar + b
▶ Curved elements also possible: iso/sub/super-parametric
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Dealing with the Mesh, Part II
Based on knowledge of how to do this on Ê :

Can now integrate on Ω:

and differentiate on Ω:

Jacobian of T−1
k ?
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Dealing with the Mesh, Part III

Approximation basis set on Ek?

What function space do we get if Ψ is non-affine?
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Going GalerkinZ

Ek

qkt ϕ+ (∇ · F k)ϕdx = 0

Integrate by parts:

Problem?
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Strong-Form DG

Weak form:

0 =

Z

Ek

qkt ϕdx −
Z

Ek

F k ·∇ϕdx +

Z

∂Ek

(F k · n̂)∗ϕdx

Integrate by parts again:
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Accuracy and Stabillity

In DG: what provides accuracy? what provides stability?

Following slides based on material by Tim Warburton
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Stability: Basic Setup (1/2)

0 =

Z

Ek

qkt ϕdx −
Z

Ek

F k ·∇ϕdx +

Z

∂Ek

(F k · n̂)ϕdSx
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Stability: Basic Setup (2/2)

∂t∥qk∥2
2,Ek

2
=

Z

Ek

aqk∂xqkdx −
Z

∂Ek

(aqknx)
∗qkdSx
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Stability: Going Global

∂t∥qk∥2
2,Ek

2
=

Z

∂Ek

a(qk)
2nx

2
− (aqknx)

∗qkdSx
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Gather up
∂t∥qk∥2

2,Ω

2
=

X

f ∈faces

� Z

f

a(q+k )
2n+x

2
− (aqknx)

∗
+q

+
k dSx

+

Z

f

a(q−k )
2n−x

2
− (aqknx)

∗
−q

−
k dSx

�
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Picking a Flux
Want:

(∗) =
�
an−x

q−k + q+k
2

− (aqknx)
∗
−

�
(q−k − q+k )

!
≤ 0

Ideas?
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Picking a flux, attempt two
Want:

(∗) =
�
an−x

q−k + q+k
2

− (aqknx)
∗
−

�
(q−k − q+k )

!
≤ 0

More ideas?
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Comparing Fluxes (1/3)
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Figure from talk by Jan Hesthaven

Upwind penalizes jumps!

324



Comparing Fluxes (2/3)

Red: central ��uxes (alpha=0)
Blue: upwind ��uxes (alpha=1)

Figure from lecture by Tim Warburton
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