Today $2 / 7$

1) Look of charastaristiz curves
2) Derive a conservation
3) Introduce a Finite Voluae "frame work"

Take $\frac{\partial u}{\partial t}+\frac{\partial(f(u))}{\partial x}=0$
$\Rightarrow \quad \frac{\partial u}{\partial t}+f^{\prime}(u) \frac{\partial u}{\partial x}=0$
Let $x(t)$ be a curve such that

$$
\frac{d x(t)}{d t}=f^{\prime}(u)
$$

Then $\frac{d u(x(t), t)}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{d x}{d t}$

$$
=u_{t}+f^{\prime}(u) u_{x}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\frac{d u}{d t}=0 \\
\frac{d x}{d t}=0
\end{array} \Rightarrow\right.
$$

$$
=0
$$

$$
\begin{aligned}
& u=c \\
& x=u t+d \\
& \Rightarrow \text { straight likes }
\end{aligned}
$$

each curve is

$$
x(t)=u\left(x_{0}, 0\right) \cdot t+x_{0}
$$

from each X_{0}
Cases
(1) Shock

$$
u_{0}(x, 0)= \begin{cases}1 & x<0 \\ 1-x & x \in[0,1] \\ 0 & x>1\end{cases}
$$

(2) Rarefaction

$$
\begin{aligned}
& u_{0}(x, 0)= \begin{cases}0 & x<0 \\
x & x \in[0, B \\
1 & x>1\end{cases} \\
& \text { the chalactosis tie curses. }
\end{aligned}
$$

$$
\text { Burgers: } f(u)=\frac{u^{2}}{2} \quad=\frac{\frac{0^{2}}{2}-\frac{1^{2}}{2}}{0-1}=1 / 2
$$

Definition 6.5: Riemann Problem

Consider scalar conservation law (6.13) with initial condition

$$
u(x, 0)= \begin{cases}u^{-} & \text {if } x \leq 0 \tag{6.29}\\ u^{+} & \text {if } x>0\end{cases}
$$

This problem consisting of constant left and right states separated by a jump discontinuity is called a Riemann problem.

$$
u(x, 0)=\left\{\begin{array}{lll}
0 & x \leq 0 \\
1 & x>0
\end{array}\right.
$$

a. Unphysical weak solution with entropy-violating shock.

b. Unique physically relevant, vanishing viscosity weak solution (rarefaction wave).

Return to conservation laves:
Conserved quantity.

$$
\begin{aligned}
& \left.u(x, t)=\begin{array}{r}
\text { density at } x \\
\text { at the } t .\left[\frac{\mathrm{kg}}{\mathrm{~m}}\right] \\
\int_{x}^{x_{2}} u(x, t) d x= \\
\text { total mass in }\left[x_{1}, x_{2}\right]
\end{array}\right)
\end{aligned}
$$

mass can only charge due to flow in or out at x_{1} or x_{2} "flux"

$$
\begin{aligned}
& F_{1}(t)=\text { rate at } x_{1} \quad\left(\frac{\mathrm{~kg}}{\mathrm{~s}}\right) \\
& F_{2}(t)=\text { rote at } x_{2} \\
& \left(\text { flux "to th right" } F_{i}(t)>0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{1}}^{x_{2}} u(x, t) d x=\underbrace{F_{1}(e)}_{\text {fow in at } x_{1}} \underbrace{F_{2}(t)}_{\text {flon mat } x_{2}} \\
& \text { general } \\
& =f\left(u\left(x_{1}, t\right)\right)-f\left(u\left(x_{2}, t\right)\right) \\
& =-\left.f(u(x, t))\right|_{x_{1}} ^{x_{2}} \\
& \Rightarrow \frac{d}{d t} \int_{x_{1}}^{x_{2}} u(x, t) d x+\int_{x_{1}}^{x_{2}} \frac{d}{d x} f(u(x, t)) d x=0 \\
& \Rightarrow \quad \int_{x_{1}}^{x_{2}} u_{t}+(f(a))_{x} d x=0
\end{aligned}
$$

Idea

$$
\begin{aligned}
& \vdash \Omega_{k} \dashv \\
& \Omega_{k}=\left[x_{k-1 / 2}, x_{k+1 / 2}\right] \\
& \int_{\Omega_{k}} \frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x} d x=0 \\
& h_{x} \frac{d \bar{u}_{k}(t)}{d t}+f\left(u\left(x_{k+1 / 2}, t\right)\right)-f\left(u\left(x_{k-1 / 2}, t\right)\right)=0 \\
& \leftrightarrow \bar{u}_{k}(t)=\frac{1}{h_{x}} \int_{\Omega_{k}} u(x, t) d x
\end{aligned}
$$

The solutim $u(x, t)$ in Ω_{k} satisfies

$$
\frac{d \bar{u}_{x}(t)}{d t}+\frac{f\left(u\left(x_{k+1 / 2}, t\right)\right)-f\left(u\left(x_{k-1 / 2}, t\right)\right)}{h x}=0
$$

exactly.
To turn into amethad:
(1) discrete values $u_{k} \approx \bar{u}_{k}(t)$
(2) define a numerical flux.

$$
\hat{f}_{k+1 / 2} \approx f\left(u\left(x_{k+1 / 2}, t\right)\right)
$$

(3) ODE solver
method "frame work":

$$
\frac{d u_{k}(t)}{d t}+\hat{f}_{k+1 / 2}(t)-\hat{f}_{k-1 / 2}(t)=0
$$

个
ODE Solar FWD Euler Ky whatever
For $\hat{f}_{k+1 / 2}(t)$.
We will use $\hat{f}_{k+1 / 2}(t) \approx f^{*}(0,0)$

$$
\begin{aligned}
& =f^{*}\left(u_{k+1 / 2}(t), u_{k+1 / 2}^{+}(t)\right] \\
& \text { approx value "just to } \\
& \text { the left" of } x_{k+1 / 2}
\end{aligned}
$$

easiest:

$$
\begin{aligned}
& u_{k+1 / 2}^{-}=u_{k} \\
& u_{k+1 / 2}^{+}=u_{k+1}
\end{aligned}
$$

let $u_{k, R}=$ approx cell average $t t$ $+$
FwD Enter

$$
\frac{u_{k 2+1}-u_{k e}}{k_{t}}+\frac{f^{*}\left(u_{k l}, u_{k+1}\right)-f^{*}\left(u_{k-1}, u_{k l}\right)}{h_{x}}=0
$$

The PDE gives us $f(u)$

Definition 6.8: Consistent numerical flux function
A numerical flux function $f^{*}\left(u^{-}, u^{+}\right)$for conservation law (6.40) is called consistent if

$$
f^{*}(u, u)=f(u) \quad \forall u
$$

- $f^{*}\left(u^{-}, u^{+}\right)$is Lipschitz continuous in each argument.
advection

$$
\begin{gathered}
u_{t}+(a u)_{x}=0 \\
f(u)=a \cdot u
\end{gathered}
$$

Pick $f^{*}\left(u_{k e}, u_{k+1}\right)=a u_{k e}$

$$
\begin{gathered}
\text { and } f^{*}\left(u_{k-1 e}, u_{k l}\right)=a u_{k-1 l} \\
0=\frac{u_{k 2+1}-u_{k-}}{h_{t}}+f^{*}\left(u_{k 2}, u_{k+1}\right)-f^{*}\left(u_{\left.k-1, a_{k k}\right)}\right) \\
\Rightarrow \frac{u_{k l+1}-u_{k e}}{h_{t}}+a \frac{u_{k e}-u_{k-1 l}}{h t}=0 \\
\text { assumes } a>0
\end{gathered}
$$

if $a>0: \quad f^{*}\left(u_{k e}, u_{k+1 \ell}\right)=a u_{k l}$
if $a<s$: $\quad f^{*}\left(u_{k e r}, u_{k+1 \ell}\right)=a u_{k+12}$
Q: what if we want f^{*} to "work" for both?
hint: use |a|

$$
\begin{aligned}
\rightarrow f^{*}\left(u_{k l}, u_{k+1 e}\right)= & a\left(\frac{\left.u_{k l}+u_{k+1 l}\right)}{2}\right) \\
& -\frac{|a|}{2}\left(u_{k+1 l}-u_{k l}\right)
\end{aligned}
$$

