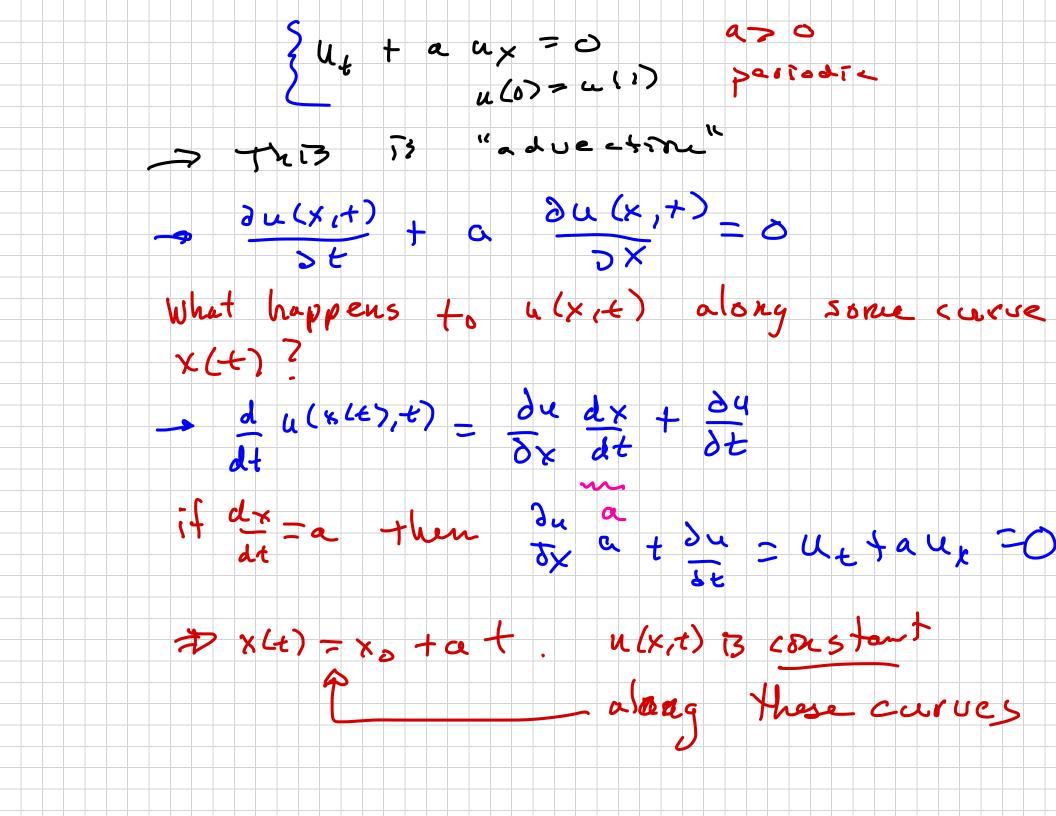
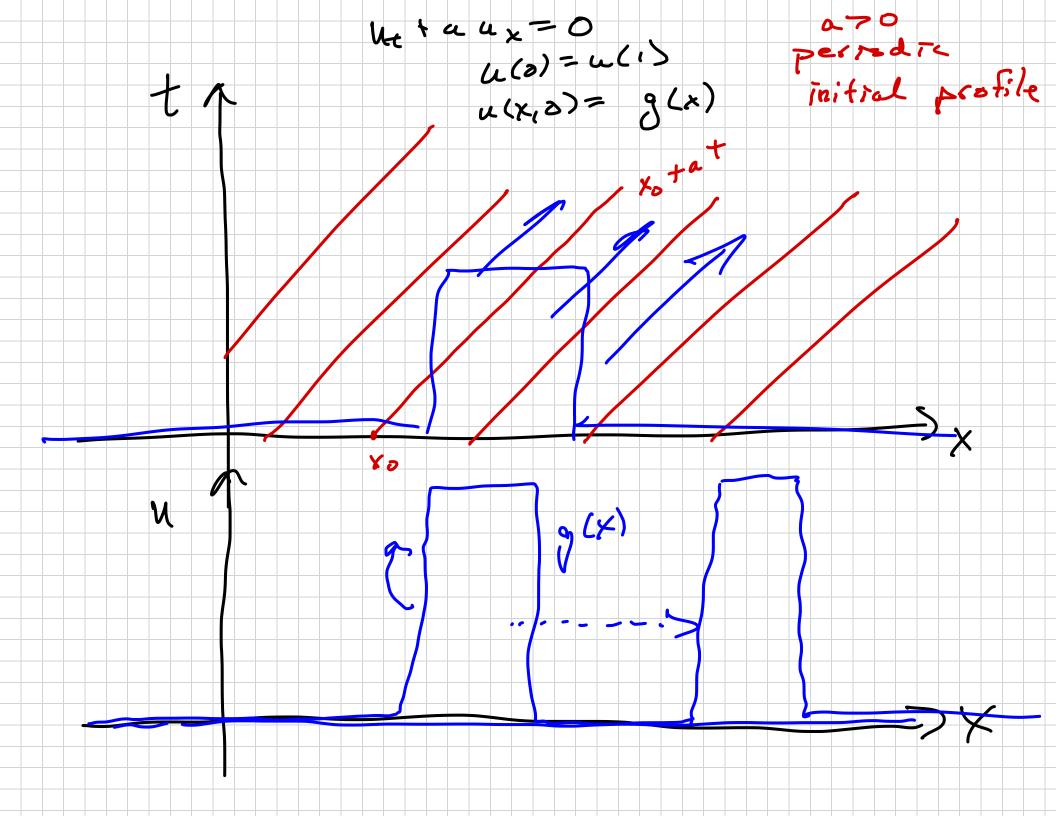
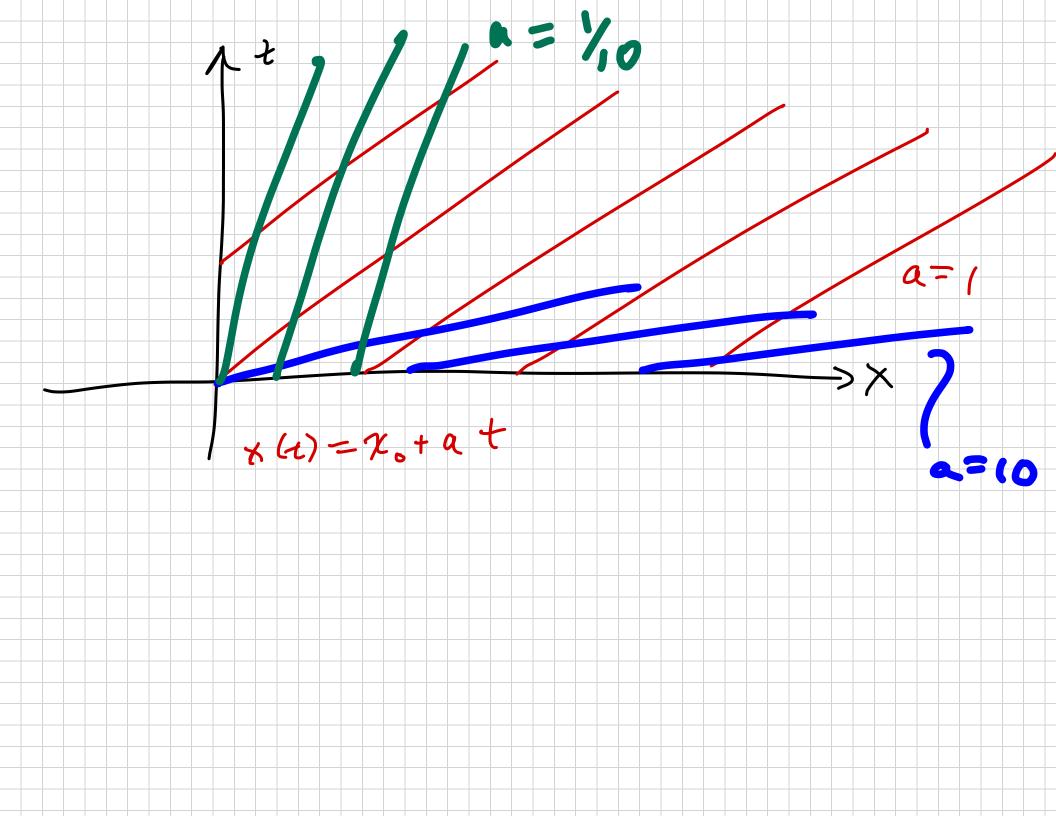
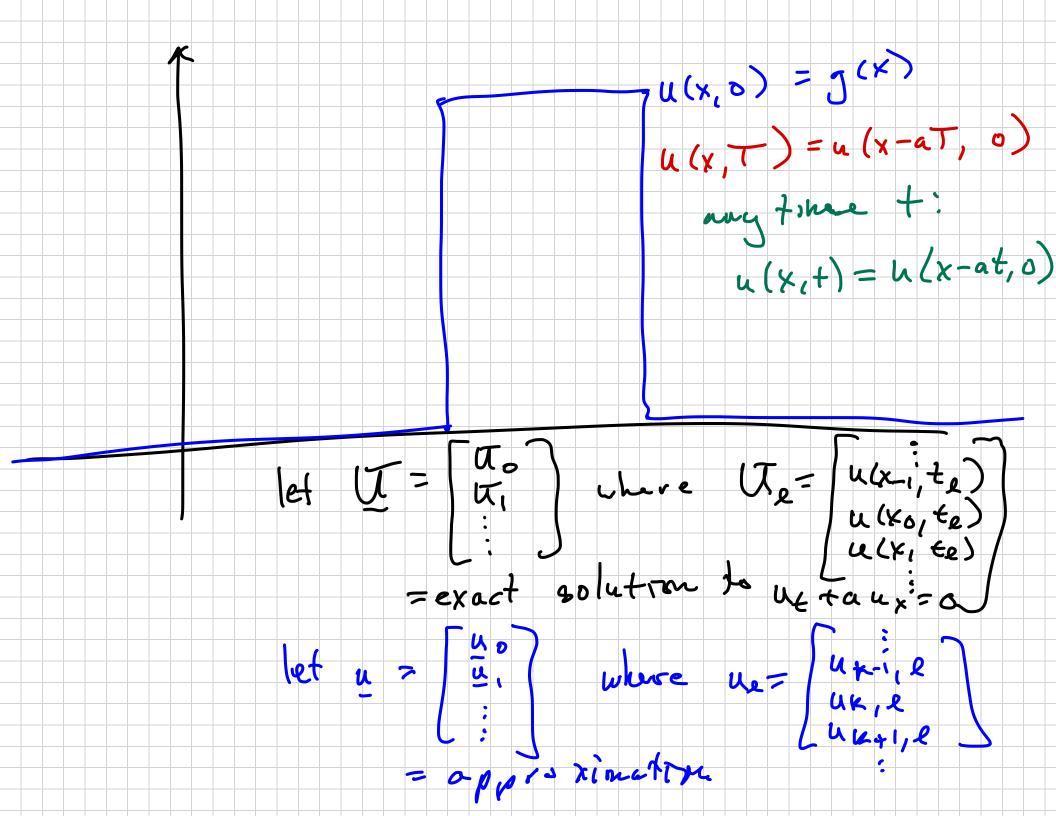
10 day 1/24 Objectives o outline expectations for ut +aux =0 a) Describe ETBS as a 2-1ese (scheme (3) Introduce convergence Consistency Stability









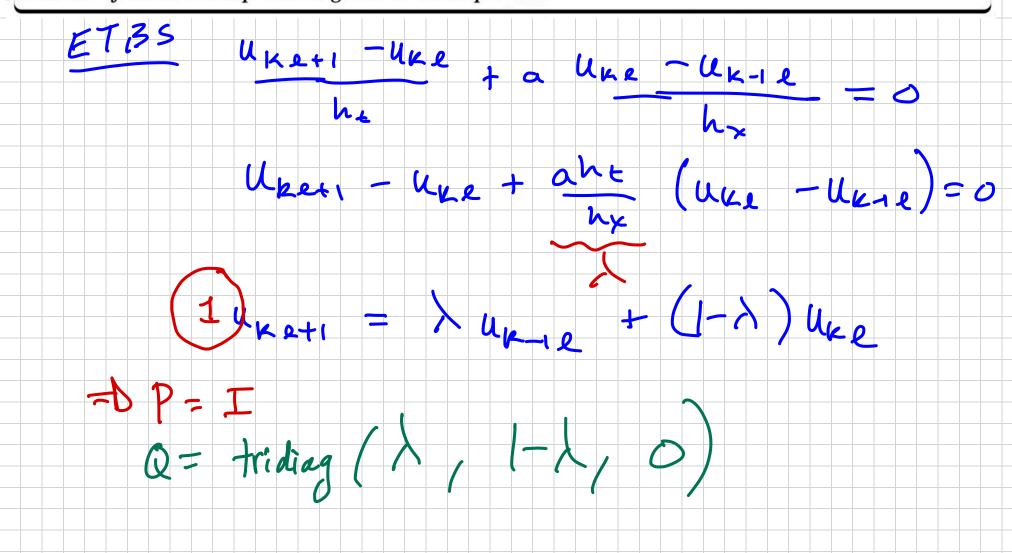
Then the error eye = u(xx, te) a sere or e = Te - ne e = U - u Q: How do we know is our scheme is accourates. De Do as he has 3) "convergent"

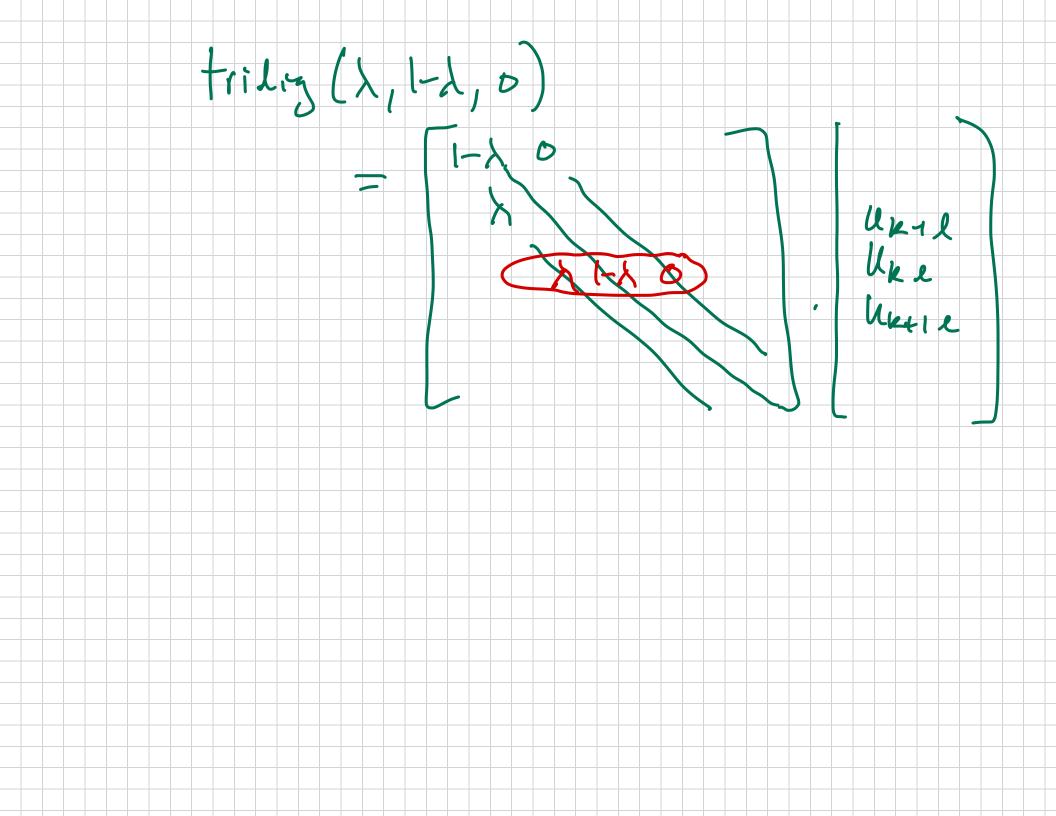
Definition 5.7: Two-Level Linear Finite-Difference Scheme

A finite-difference scheme that can be written as,

$$P_h \boldsymbol{u}_{\ell+1} = Q_h \boldsymbol{u}_{\ell} + h \boldsymbol{v}_{\ell}, \tag{5.5}$$

is called a two-level linear finite-difference scheme. Each iteration depends only on two instances of time. Examples are given in Example 5.8.





Truncation error:

Definition 5.10: Truncation Error

The <u>local truncation error</u>, $\tau_{k,\ell}$, is the error that remains when a finite-difference method is applied to the exact solution, $u(x_k, t_\ell)$.

Example 5.12: ETFS Truncation Error

$$\begin{split} \tau_{k,\ell} &= \frac{u(x_k,t_{\ell+1}) - u(x_k,t_{\ell})}{h_t} + a \frac{u(x_{k+1},t_{\ell}) - u(x_k,t_{\ell})}{h_x} \\ &= \frac{1}{h_t} \Big(u(x_k,t_{\ell}) + u_t(x_k,t_{\ell})h_t + u_{tt}(x_k,\varsigma) \frac{h_t^2}{2} - u(x_k,t_{\ell}) \Big) \\ &+ \frac{a}{h_x} \Big(u(x_k,t_{\ell}) + u_x(x_k,t_{\ell})h_x + u_{xx}(\xi^+,t_{\ell}) \frac{h_x^2}{2} - u(x_k,t_{\ell}) \Big) \\ &= \underbrace{u_{tt}(x_k,\varsigma) \frac{h_t}{2}}_{=\mathcal{O}(h_t,h_x)} + a \underbrace{u_{xx}(\xi^+,t_{\ell}) \frac{h_x}{2}}_{=\mathcal{O}(h_t,h_x)} \end{split}$$

Definition 5.15: Consistency, Stability, and Convergence

Let $\frac{\partial^{\mu} u}{\partial x^{\mu}}$ denote the μ -th partial derivative in x, and $\frac{\partial^{\nu} u}{\partial t^{\nu}}$ denote the ν -th partial derivative in t. Assume that $\frac{\partial^{\mu} u(x,\hat{t})}{\partial x^{\mu}}$, $\frac{\partial^{\nu} u(x,\hat{t})}{\partial t^{\nu}} \in L^2(\mathbb{R})$, for all $\hat{t} < t^*$.

A two-level linear finite-difference scheme, $P_h \mathbf{u}_{\ell+1} = Q_h \mathbf{u}_{\ell} + \mathbf{b}_{\ell} h_t$, is

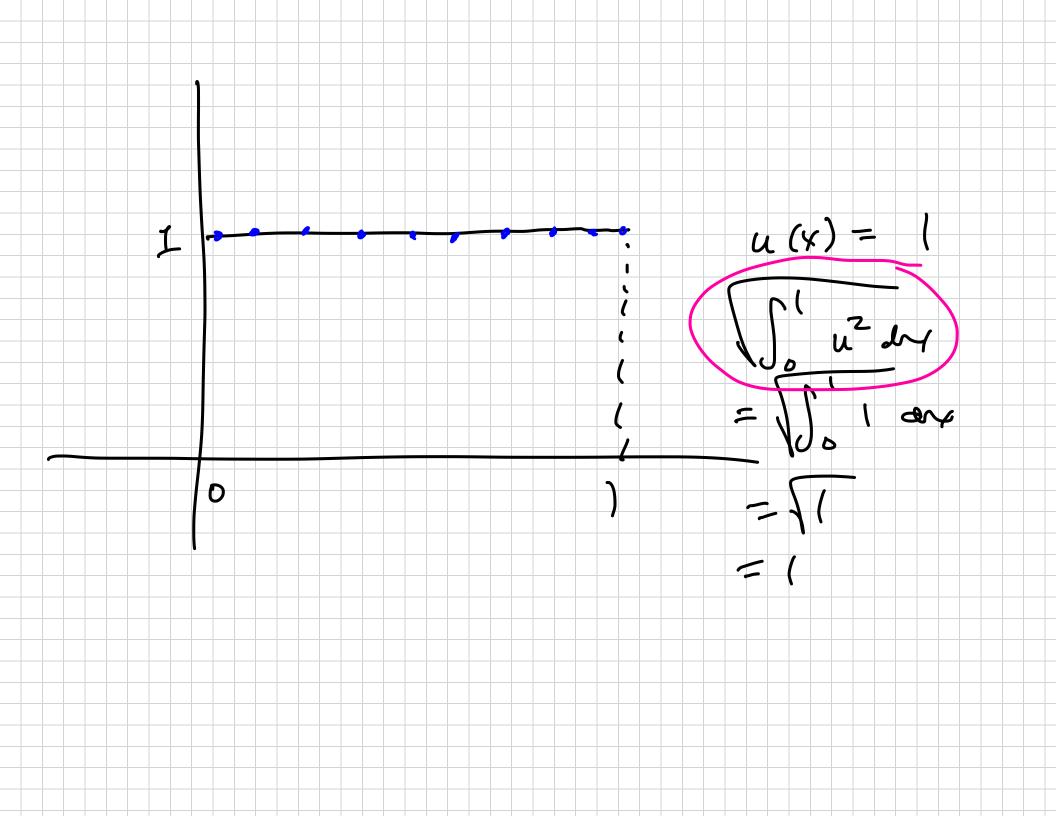
• consistent in the L^2 -norm with order ν in time and μ in space if

$$\max_{\ell,\ell h_t \leq t^*} \|oldsymbol{ au}_\ell\| = \mathcal{O}(h_x^\mu,h_t^
u);$$

ullet convergent in the L^2 -norm with order u in time and μ in space if

$$\max_{\ell,\ell h_t \leq t^*} \|oldsymbol{e}_\ell\| = \mathcal{O}(h_x^\mu,h_t^
u);$$

• <u>stable</u> in the L^2 -norm if $\exists c > 0$, independent of h_t and h_x , such that $\|(P_h^{-1}Q_h)^{\ell}P_h^{-1}\| \ge c$ for all ℓ and h_t such that $\ell h_t \le t^*$.



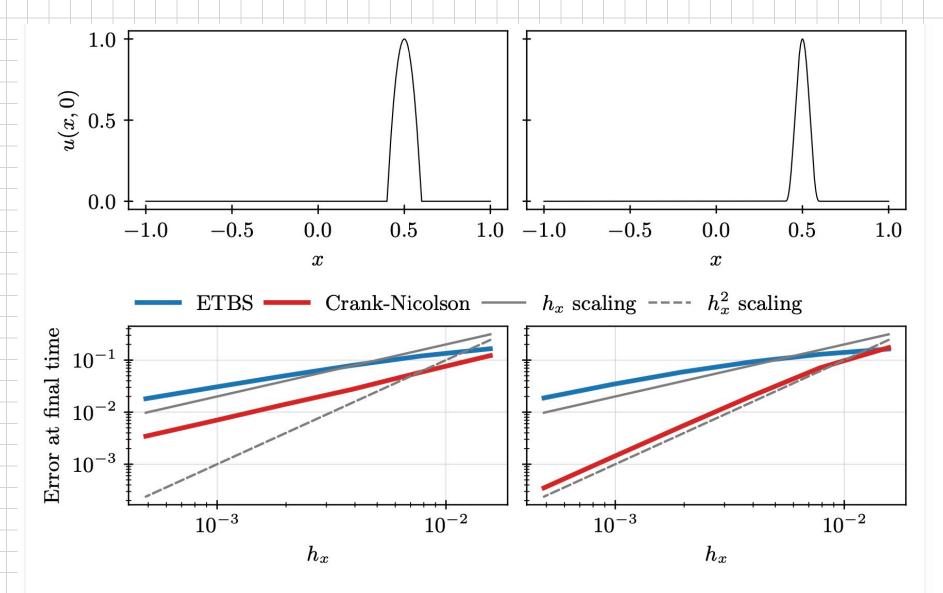
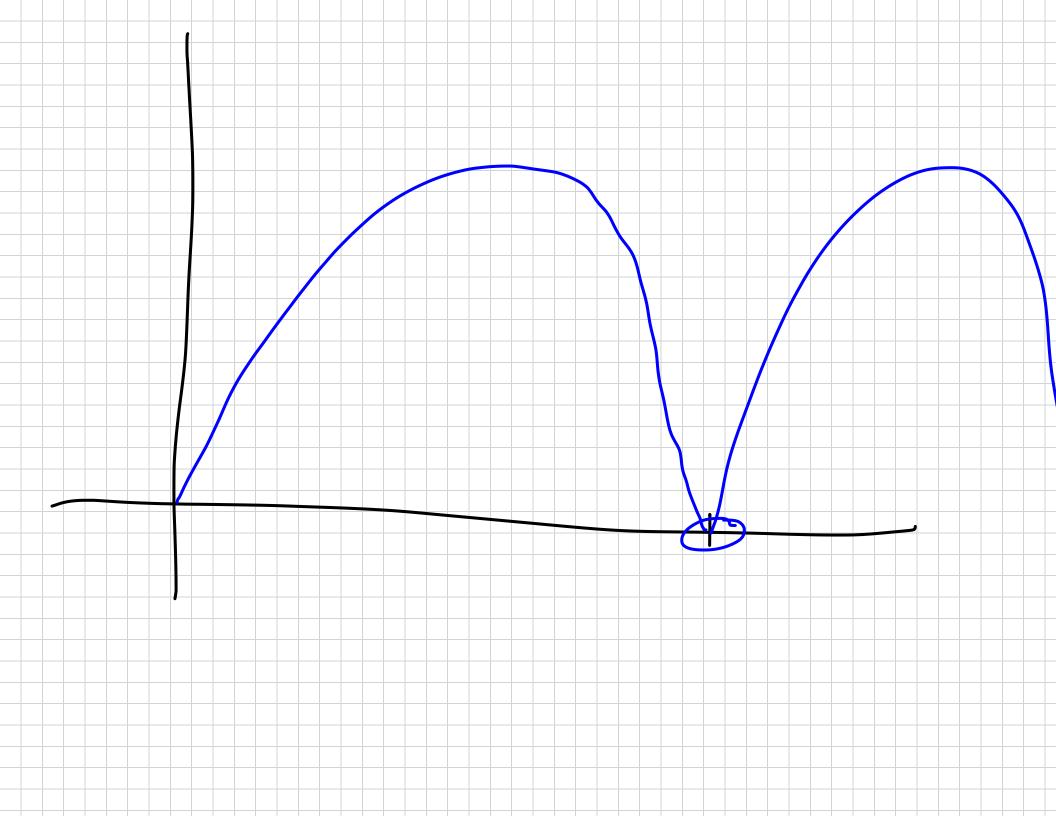


Figure 5.2.1. Convergence of two schemes for the one-way wave equation, with a continuous, but not continuously differentiable solution (left), and a smoother solution (right).



Theorem 5.19: Lax Convergence Theorem

If a two-level linear finite-difference scheme, $P_h \mathbf{u}_{\ell+1} = Q_h \mathbf{u}_{\ell} + \mathbf{b}_{\ell} h_t$, is consistent in the L^2 -norm with order ν in time and μ in space and stable in the L^2 -norm, then it is convergent in the L^2 -norm with order ν in time and μ in space.

