Goals:

\( \partial_t n + \partial_x n = 0 \)

- Causality identifies time variables
- \( t \)

\[ 0 \quad \quad \quad \quad x \]

\( \uparrow \)

\( \text{point values} \)

\( \uparrow \text{cell averages} \)

\( \text{meh, too inaccurate} \)

\( \text{Luke Andreas Kloeden} \)
FE idea

Use cell-wise linear functions based on vertex point value DOFs

\[-\Delta u = f \quad \text{Poisson, } \quad \text{"UP"} \]

\[-(\partial_x^2 + \partial_y^2)u = f \]

\[-\partial_x^2 u = \rho \]

\[-\partial_{xx} u = \rho \]

To make solvable

\[u = g \text{ on } \partial \Omega \]

Multiply by test \( \varphi \)

\[-\Delta u \varphi = \rho \varphi \]

Weak form

\[\int_\Omega \nabla u \cdot \nabla \varphi \, d\Omega = \int_\Omega f \varphi \, d\Omega \]
"weak derivative" \subseteq \text{Sobolev spaces}
Consider

\[ f_n(x) = \begin{cases} 
-1 & x \leq -\frac{1}{n}, \\
\frac{3n}{2}x - \frac{n^3}{2}x^3 & -\frac{1}{n} < x < \frac{1}{n}, \\
1 & x \geq 1/n.
\end{cases} \]

Converges to the step function. Problem?

\[ f_n \in C^1(\mathbb{R}) \text{ but } f \text{ is not even cont.} \]

\[ \varphi(x) = \begin{cases} 
-1 & x < 0 \\
1 & x > 0
\end{cases} \]
Norms

Definition (Norm)

A norm $\| \cdot \|$ maps an element of a vector space into $[0, \infty)$. It satisfies:

- $\|x\| = 0 \iff x = 0$ (definiteness)
- $\|\lambda x\| = |\lambda|\|x\|$
- $\|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)
Convergence

Definition (Convergent Sequence)

\[ x_n \rightarrow x \iff \|x_n - x\| \rightarrow 0 \] (convergence in norm)

Definition (Cauchy Sequence)

for all \( \epsilon > 0 \) there exists an \( n \) for which

\[ \|x_n - x_m\| \leq \epsilon \] for \( n, m \geq n \).
Banach Spaces

Definition (Complete/“Banach” space)

Cauchy \Rightarrow \text{Convergent}

What’s special about Cauchy sequences?

Limit (in some function space) shows up out of this air.

Counterexamples?

\((\mathbb{Q}, \| \cdot \|_1)\)
\((C^1, \| \cdot \|_C)\)

\(\| f \|_C = \int_{-\infty}^{\infty} |f(x)| dx\)
\text{sup } u. \text{ max }
More on $C^0$

Let $\Omega \subseteq \mathbb{R}^n$ be open. Is $C^0(\Omega)$ with $\|f\|_{\infty} := \sup_{x \in \Omega} |f(x)|$ Banach?

$$(0, 1) \quad f(x) = \frac{1}{x}$$

Problem: $\|f\|_{\infty}$ not defined $\Rightarrow (C^0(\Omega), \|\cdot\|_{\infty})$ not Banach

Is $C^0(\overline{\Omega})$ with $\|f\|_{\infty} := \sup_{x \in \Omega} |f(x)|$ Banach?

Assume (7i) Compact w/ sup norm.

- Let $x \in \overline{\Sigma}$. $(\varphi_i(x))_{i \in \mathbb{N}}$ $\in$ Cauchy sequence in $(10, 1:1)$

$\Rightarrow$ there exists a $c$ $\in \mathbb{R}$ so that $f(x) \rightarrow c$ (i$\rightarrow$0)

Assemble candidate limit func $f_0(x)$ of pointwise limits

**Closed**

For $\overline{\Omega}$ open
Let \( \varepsilon > 0 \), then exists an \( N \in \mathbb{N} \) so that

\[
\sup_{x \in S} |f_n(x) - f_m(x)| < \varepsilon \quad \text{for all } n, m \geq N.
\]

Take the limit \( m \to \infty \):

\[
\max_{x \in S} |f_n(x) - f(x)| < \varepsilon \quad \Rightarrow \quad \|f_n - f\|_\infty \to 0.
\]

\( \therefore \) uniform convergence
$C^m$ Spaces

Let $\Omega \subseteq \mathbb{R}^n$.

Consider a multi-index $k = (k_1, \ldots, k_n) \in \mathbb{N}_0^n$ and define the symbols

$$D^k \varphi = \frac{\partial^{\mid k \mid}}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}} \varphi \quad \mid k \mid = k_1 + \cdots + k_n$$

Definition ($C^m$ Spaces)

$$C^m(\Omega) = \{ \varphi \in C^0(\Omega) : D^k \varphi \in C^0(\Omega) \text{ s.t. } |k| \leq m \}$$

$$C^\infty(\Omega) = \{ \varphi \in C^0(\Omega) : D^k \varphi \in C^0(\Omega) \text{ for all } k \}$$

$\Omega_{\text{ndry}} \rightarrow C^m_0(\Omega) = \{ \varphi \in C^m(\Omega) : \varphi \text{ have compact support} \}$
E.g. $C^2$: \[ \partial_{xx} \partial_{yy} u \in C^0? \quad \text{no!} \]
\[ \partial_{xx} u, \partial_{yy} u \in C^0 \quad \text{yes!} \]

"Support" of a function: \( \{ x \in \mathbb{R} | p(x) \neq 0 \} \)

"Compact": closed + bounded \( (\text{only in } \mathbb{R}^n) \)
$L^p$ Spaces

Let $1 \leq p < \infty$.

**Definition ($L^p$ Spaces)**

$$L^p(\Omega) := \left\{ u : (u : \mathbb{R} \to \mathbb{R}) \text{ measurable, } \int_{\Omega} |u|^p \, dx < \infty \right\},$$

$$\|u\|_p := \left( \int_{\Omega} |u|^p \, dx \right)^{1/p}.$$

**Definition ($L^\infty$ Space)**

$$L^\infty(\Omega) := \left\{ u : (u : \mathbb{R} \to \mathbb{R}), |u(x)| < \infty \text{ almost everywhere} \right\},$$

$$\|u\|_\infty = \inf \{ C : |u(x)| \leq C \text{ almost everywhere} \}.$$
### Theorem (Hölder’s Inequality)

For $1 \leq p, q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$ and measurable $u$ and $v$, \[ \| uv \|_1 \leq \| u \|_p \| v \|_q \]

(Gen. of Cauchy–Schwarz)

### Theorem (Minkowski’s Inequality (Triangle inequality in $L^p$))

For $1 \leq p \leq \infty$ and $u, v \in L^p(\Omega)$, \[ \| u + v \|_p \leq \| u \|_p + \| v \|_p \]
Let $V$ be a vector space.

**Definition (Inner Product)**

An inner product is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ such that for any $f, g, h \in V$ and $\alpha \in \mathbb{R}$

\[
\langle f, f \rangle \geq 0, \\
\langle f, f \rangle = 0 \iff f = 0, \\
\langle f, g \rangle = \langle g, f \rangle, \\
\langle \alpha f + g, h \rangle = \alpha \langle f, h \rangle + \langle g, h \rangle.
\]

**Definition (Induced Norm)**

\[\|f\| = \sqrt{\langle f, f \rangle}.\]
Hilbert Spaces

**Definition (Hilbert Space)**

An inner product space that is complete under the induced norm.

Let $\Omega$ be open.

**Theorem ($L^2$)**

$L^2(\Omega)$ equals the closure of (set of all limits of Cauchy sequences in) $C_0^\infty(\Omega)$ under the induced norm $\| \cdot \|_2$.

**Theorem (Hilbert Projection (e.g. Yosida '95, Thm. III.1))**

\[ \sum_{n=1}^{\infty} a_n e_n = \text{proj} \]
Weak Derivatives

Define the space $L^1_{\text{loc}}$ of locally integrable functions.

Definition (Weak Derivative)

$\nu \in L^1_{\text{loc}}(\Omega)$ is the weak partial derivative of $u \in L^1_{\text{loc}}(\Omega)$ of multi-index order $k$ if
Weak Derivatives: Examples (1/2)

Consider all these on the interval $[-1, 1]$.

\[ f_1(x) = 4(1 - x)x \]

\[ f_2(x) = \begin{cases} 
2x & x \leq 1/2, \\
2 - 2x & x > 1/2.
\end{cases} \]
Weak Derivatives: Examples (2/2)

\[ f_3(x) = \sqrt{\frac{1}{2}} - \sqrt{|x - 1/2|} \]
Sobolev Spaces

Let $\Omega \subset \mathbb{R}^n$, $k \in \mathbb{N}_0$ and $1 \leq p < \infty$.

Definition ($\langle k, p \rangle$-Sobolev Norm/Space)
More Sobolev Spaces

$W^{0,2}$?

$W^{s,2}$?

$H^{1}_0(\Omega)$?
Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems
  tl;dr: Functional Analysis
  Back to Elliptic PDEs
  Galerkin Approximation
  Finite Elements: A 1D Cartoon
  Finite Elements in 2D
  Approximation Theory in Sobolev Spaces
  Saddle Point Problems, Stokes, and Mixed FEM
  Non-symmetric Bilinear Forms

Discontinuous Galerkin Methods for Hyperbolic Problems
An Elliptic Model Problem

Let $\Omega \subset \mathbb{R}^n$ open, bounded, $f \in H^1(\Omega)$.

$$-\nabla \cdot \nabla u + u = f(x) \quad (x \in \Omega),$$

$$u(x) = 0 \quad (x \in \partial \Omega).$$

Let $V := H^1_0(\Omega)$. Integration by parts? (Gauss’s theorem applied to $ab$):

Weak form?
Motivation: Bilinear Forms and Functionals

\[ \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} uv = \int_{\Omega} f v. \]

This is the weak form of the strong-form problem. The task is to find a \( u \in V \) that satisfies this for all test functions \( v \in V \).

Recast this in terms of bilinear forms and functionals:
Dual Spaces and Functionals

**Bounded Linear Functional**

Let \((V, \|\cdot\|)\) be a Banach space. A **linear functional** is a linear function \(g : V \rightarrow \mathbb{R}\). It is **bounded** (\(\Leftrightarrow\) continuous) if there exists a constant \(C\) so that \(|g(v)| \leq C \|v\|\) for all \(v \in V\).

**Dual Space**

Let \((V, \|\cdot\|)\) be a Banach space. Then the **dual space** \(V'\) is the space of bounded linear functionals on \(V\).

**Dual Space is Banach** (cf. e.g. Yosida ‘95 Thm. IV.7.1)

\(V'\) is a Banach space with the **dual norm**
Functionals in the Model Problem

Is \( g \) from the model problem a bounded functional? (In what space?)

That bound felt loose and wasteful. Can we do better?
Riesz Representation Theorem (1/3)

Let $V$ be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$.

**Theorem (Riesz)**

Let $g$ be a bounded linear functional on $V$, i.e. $g \in V'$. Then there exists a unique $u \in V$ so that $g(v) = \langle u, v \rangle$ for all $v \in V$. 
Riesz Representation Theorem: Proof (2/3)

Have \( w \in N(g)^\perp \setminus \{0\} \), \( \alpha = g(w) \neq 0 \), and \( z := v - \left(\frac{g(v)}{\alpha}\right)w \perp w \).
Uniqueness of $u$?
Back to the Model Problem

\[ a(u, v) = \langle \nabla u, \nabla v \rangle_{L^2} + \langle u, v \rangle_{L^2} \]

\[ g(v) = \langle f, v \rangle_{L^2} \]

\[ a(u, v) = g(v) \]

Have we learned anything about the solvability of this problem?
Poisson

Let $\Omega \subset \mathbb{R}^n$ open, bounded, $f \in H^{-1}(\Omega)$.

This is called the Poisson problem (with Dirichlet BCs).

Weak form?
Ellipticity

Let $V$ be Hilbert space.

**V-Ellipticity**

A bilinear form $a(\cdot, \cdot) : V \times V \rightarrow \mathbb{R}$ is called **coercive** if there exists a constant $c_0 > 0$ so that

$$a(v, v) \geq c_0 \|v\|^2$$

and $a$ is called **continuous** if there exists a constant $c_1 > 0$ so that

$$|a(v, w)| \leq c_1 \|v\| \|w\|$$

If $a$ is both coercive and continuous on $V$, then $a$ is said to be $V$-elliptic.
Lax-Milgram Theorem

Let $V$ be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$.

Lax-Milgram, Symmetric Case

Let $a$ be a $V$-elliptic bilinear form that is also symmetric, and let $g$ be a bounded linear functional on $V$.

Then there exists a unique $u \in V$ so that $a(u, v) = g(v)$ for all $v \in V$. 

Back to Poisson

Can we declare victory for Poisson?

Can this inequality hold in general, without further assumptions?
Poincaré-Friedrichs Inequality (1/3)

Theorem (Poincaré-Friedrichs Inequality)

Suppose $\Omega \subset \mathbb{R}^n$ is bounded and $u \in H_0^1(\Omega)$. Then there exists a constant $C > 0$ such that

$$\|u\|_{L^2} \leq C \|\nabla u\|_{L^2}.$$
Poincaré-Friedrichs Inequality (2/3)

Prove the result in $C_0^\infty(\Omega)$. 
Poincaré-Friedrichs Inequality (3/3)

Prove the result in $H_0^1(\Omega)$. 
Show that the Poisson bilinear form is coercive.

Draw a conclusion on Poisson:
Outline

Introduction

Finite Difference Methods for Time-Dependent Problems

Finite Volume Methods for Hyperbolic Conservation Laws

Finite Element Methods for Elliptic Problems
  tl;dr: Functional Analysis
  Back to Elliptic PDEs
  Galerkin Approximation
  Finite Elements: A 1D Cartoon
  Finite Elements in 2D
  Approximation Theory in Sobolev Spaces
  Saddle Point Problems, Stokes, and Mixed FEM
  Non-symmetric Bilinear Forms

Discontinuous Galerkin Methods for Hyperbolic Problems
Ritz-Galerkin

Some key goals for this section:

▶ How do we use the weak form to compute an approximate solution?
▶ What can we know about the accuracy of the approximate solution?

Can we pick one underlying principle for the construction of the approximation?
Galerkin Orthogonality

\[ a(u, v) = g(v) \quad \text{for all } v \in V, \quad a(u_h, v_h) = g(v_h) \quad \text{for all } v_h \in V_h. \]

Observations?
Céa’s Lemma

Let $V \subset H$ be a closed subspace of a Hilbert space $H$. Let $a(\cdot, \cdot)$ be a coercive and continuous bilinear form on $V$. In addition, for a bounded linear functional $g$ on $V$, let $u \in V$ satisfy

$$a(u, v) = g(v) \quad \text{for all } v \in V.$$ 

Consider the finite-dimensional subspace $V_h \subset V$ and $u_h \in V_h$ that satisfies

$$a(u_h, v_h) = g(v_h) \quad \text{for all } v_h \in V_h.$$ 

Then
Céa’s Lemma: Proof

Recall Galerkin orthgonality: \( a(u_h - u, v_h) = 0 \) for all \( v_h \in V_h \). Show the result.
**Elliptic Regularity**

**Definition** ($H^s$ Regularity)

Let $m \geq 1$, $H^m_0(\Omega) \subseteq V \subseteq H^m(\Omega)$ and $a(\cdot, \cdot)$ a $V$-elliptic bilinear form. The bilinear form $a(u, v) = \langle f, v \rangle$ for all $v \in V$ is called $H^s$ regular, if for every $f \in H^{s-2m}$ there exists a solution $u \in H^s(\Omega)$ and we have with a constant $C(\Omega, a, s)$,

**Theorem** (Elliptic Regularity (cf. Braess Thm. 7.2))

Let $a$ be a $H^1_0$-elliptic bilinear form with sufficiently smooth coefficient functions.
Elliptic Regularity: Counterexamples

Are the conditions on the boundary essential for elliptic regularity?

Are there any particular concerns for mixed boundary conditions?
Estimating the Error in the Energy Norm

Come up with an idea of a bound on $\|u - u_h\|_{H^1}$.

What’s still to do?
\textbf{$L^2$ Estimates}

Let $H$ be a Hilbert space with the norm $\| \cdot \|_H$ and the inner product $\langle \cdot, \cdot \rangle$. (Think: $H = L^2$, $V = H^1$.)

\textbf{Theorem (Aubin-Nitsche)}

Let $V \subseteq H$ be a subspace that becomes a Hilbert space under the norm $\| \cdot \|_V$. Let the embedding $V \rightarrow H$ be continuous. Then we have for the finite element solution $u \in V_h \subset V$:

\[ \text{if with every } g \in H \text{ we associate the unique (weak) solution } \varphi_g \text{ of the equation (also called the dual problem)} \]