CS556—Iterative Methods: Tentative Schedule, Fall 2024

Week 1–2:

- Course Overview
- Introduction / Examples
 - A first iterative example
 - A second iterative example: 1D Poisson
 - Grid-function evaluation as matrix-vector products
 - Stencils
 - Kronecker Product Introduction
- Gaussian elimination
 - The Geometry of Linear Systems
 - Full systems
 - Block Methods
 - Banded systems
- Saad Chapter 1, Linear Algebra Basics
 - Norms
 - Diagonally dominant matrices, irreducibly diagonally dominant
 - M matrices
 - Eigenvalues / eigenvectors / Schur form, etc.
 - Projection: 1D / n-D

Week 2–3:

- Saad Chapter 2: Discretization of PDEs
 - Finite differences
 - * Poisson / Helmholtz / Advection-diffusion 1D
 - * Poisson 2D
 - * Poisson 3D
 - * Eigenvalues
 - Finite elements
 - * Poisson 2D / 3D
- Direct Methods and the Curse of Dimensionality
- Fast Poisson Solvers using Kronecker products
- HPC considerations (Saad Chapter 11.2)
 - Pipelined/vectorized arithmetic
 - Memory hierarchies (caches)
 - Interpretive languages
 - Examples that slow performance
 - Examples with high performance

Week 4:

- Sparse Matrices
 - Graph representations
 - Sparse-matrix formats (CSR, etc.)
- Reordering and Sparse Direct Methods
 - Minimum degree ordering
 - Nested dissection ordering
 - A-conjugacy of ND orderings
 - Impact of reordering on matrix fill

Week 4–5: Basic Iterative Methods

- Jacobi, GS, SOR
- Jacobi vs GS: Poisson v. Advection-Diffusion
- Some convergence results
- ADI: Poisson / Helmholtz

Week 6-7: Projection Methods

Week 6: Conjugate Gradient Iteration

- Derivation and convergence rate
- Unpreconditioned variant
- Preconditioned variant (inc. Jacobi PCG example)
- Relationship to orthogonal polynomials
- Relationship to Steepest Descent
- Relationship to Lanczos iteration for eigenproblems

- e.g., solving $f(A)\underline{x} = \underline{b}$

• Flexible CG

Week 7: GMRES

- Full GMRES
- Restarted GMRES
- Flexible GMRES
- Left/Right preconditioning
- Alternatives to GMRES (Saad Chapter 7)

Week 8–11: Preconditioning

- Block Jacobi
- Overlapping Schwarz (additive/multiplicative)
- Multilevel Schwarz
- Substructuring
- ILU

Week 11–13: Multigrid

Remark. We will introduce many of the topics throughout the course with the intent that the principal discussion and exploration of a given topic be covered in the proposed timeline. The overall aim of the course is for students to be familiar with a broad range of tools to efficiently solve large linear systems. Choosing the correct solver can save orders-of-magnitude in computational costs, so coverage beyond iterative methods is important. In particular, the choice of optimal preconditioning strategies warrants familiarity with multiple solution algebra methods.