
CBMS Conference on Fast Direct Solvers

Dartmouth College

June 23 – June 27, 2014

Lecture 6: Direct solvers for sparse matrices

Gunnar Martinsson
The University of Colorado at Boulder

Research support by:

A model problem

Let Ω = [0,1]2. We introduce a square n× n grid on Ω with nodes {xj}Nj=1 where N = n2.

Let u = [u(j)]Nj=1 denote a potential vector, and let f = [f(j)]Nj=1 denote a given load vector.

The equilibrium equation we seek to solve is

Au = f,

where A is a finite difference operator discretizating an elliptic boundary value problem
on Ω (Laplace, Helmholtz, convection-diffusion, etc).

The archetypical example of an elliptic finite difference equation is the 5-point stencil

(1) [Au](k) =
1
h2

(4u(k)− u(ks)− u(ke)− u(kn)− u(kw)) ,

where h is the grid spacing (h = 1/(n− 1)), where k is a node in the mesh, and where
{ks, ke, kn, kw} are the nodes that are immediate neighbors of k to the south, east,
north, and west of k, respectively.

k kekw

ks

kn

Then
Au = f

is a discrete analog of the Poisson equation (with ∆ = ∂2

∂x21
+ ∂2

∂x22
)

−∆u = f .

Example: As a generalization, one could consider a grid conduction problem.

[Au](k) = αk,ke

(
u(k)−u(ke)

)
+αk,kn

(
u(k)−u(kn)

)
+αk,kw

(
u(k)−u(kw)

)
+αk,ks

(
u(k)−u(ks)

)
,

where αk,` is the conductivity of the link connecting nodes k and `.

Example: Another option is to consider a more general elliptic PDE

−∆u(x) + (b(x), c(x)) · ∇u(x) + d(x)u(x) = f (x).

In this case

[Au](k) =
1
h2
(
4u(k)− u(ke)− u(kn)− u(kw)− u(ks)

)
+

b(xk)
1
h
(
u(ke)− u(kw)

)
+ c(xk)

1
h
(
u(kn)− u(ks)

)
+ d(xk)u(k).

Spectral properties of A

Let A denote the standard five-point stencil:

[Au](k) =
1
h2
(
4u(k)− u(ke)− u(kn)− u(kw)− u(ks)

)
,

and let σj = σj(A) denote the j ’th singular value of A.
(We temporarily order them “backwards” so that 0 ≤ σ1 ≤ σ2 ≤ σ3 ≤ · · · .)

Question: What is the behavior of {σj}Nj=1 as N →∞?

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700
Singular values of A on 10 x 10 grid

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000
Singular values of A on 20 x 20 grid

0 500 1000 1500
0

2000

4000

6000

8000

10000

12000

14000
Singular values of A on 40 x 40 grid

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

10000

12000

The spectra of the three discrete operators + the exact eigenvalues

Exact

N=1600

N=400

N=100

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300
The spectra of the three discrete operators + the exact eigenvalues

Exact

N=1600

N=400

N=100

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.4

−0.2

0

0.2

0.4

4th eigenvector of A on N = 10 x 10 grid: ee(4) = 7.58016e+01 (exact= 7.89568e+01)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.2

−0.1

0

0.1

0.2

4th eigenvector of A on N = 20 x 20 grid: ee(4) = 7.82399e+01 (exact= 7.89568e+01)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

4th eigenvector of A on N = 40 x 40 grid: ee(4) = 7.87862e+01 (exact= 7.89568e+01)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.4

−0.2

0

0.2

0.4

Last eigenvector of A on N = 10 x 10 grid: ee(end) = 6.28460e+02

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.2

−0.1

0

0.1

0.2

Last eigenvector of A on N = 20 x 20 grid: ee(end) = 2.86831e+03

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Last eigenvector of A on N = 40 x 40 grid: ee(end) = 1.21483e+04

Let A be the stiffness matrix of an n× n grid.
Let σj denote the jth smallest singular value of A. (Recall backwards ordering.)

Claims:

• As N →∞, σ1(A) converges.

• As N →∞, σN(A) ∼ h−2 ∼ N.

• In consequence, cond(A) =
σN
σ1
∼ N.

As N grows, we not only have the problem that A gets large, we also find that that vast
majority of the “mass” in the matrix represents garbage that was introduced by the
discretization. Good pre-conditioners, multigrid, etc, can to some extent ameliorate this
problem.

The inverse of A is much nicer. Now the eigenmodes that are relevant (and that have
any accuracy) are the dominant ones.

Very brief review of fast methods for solving Ax = b

• Brute force LU factorization: With the right pivots, complexity of the build stage is
O(N1.5) in 2D and O(N2) in 3D. Very stable and accurate. The solve stage has
complexity O(N logN) in 2D and O(N4/3) in 3D.

• Iterative methods — conjugate gradients, GMRES, etc:
Each matvec is cheap (O(N) cost) so total complexity is O(Niter × N).
Convergence is a huge problem — Niter can be large.
Standard remedy is to precondition: Solve PAx = Pb, where P ≈ A−1.
How to find such a P ... ?

•Multigrid: Can be viewed as a variation of iterative methods but with the twist that A is
represented on a hierarchy of grids (in a “multiresolution representation” if you will).
Then A is well-conditioned on each grid and convergence is very fast.
Finding the right hierarchy and “projection” and “prolongation” operators can be dicey.

• FFT: If A represents a constant coefficient operator in a simple geometry
(e.g. rectangle), then Fourier methods perform extremely well; but this only works in
specialized environments (you can do better in these...). In other environments, the
FFT can serve as a pre-conditioner.

Nested dissection (or, “how to choose the pivots in the LU decomposition”)

ND is a well-known “divide-and-conquer” technique, due to George (1973).
To illustrate the idea, consider a rectangular grid with N = (2n + 1)× n gridpoints:

We seek to compute an LU-factorization of the N × N coefficient matrix A.
Important: A has a lot of sparsity.

Let us divide the domain into three pieces:

Ω1 Ω2

Ω3

Note that there are no connections between nodes in Ω1 and Ω2.
In consequence, the non-zero blocks of the coefficient matrix are:

A =


A11 A13

A22 A23
A31 A32 A33


Now A13, At

31, A23, and At
32 have n = O(N0.5) columns.

Ω1 Ω2

Ω3
Recall that the coefficient
matrix is tessellated as

A =


A11 A13

A22 A23
A31 A32 A33

 .
Now suppose that we can somehow construct A−111 and A−122 . Then

A =


I

I
A31A−111 A32A−122 I



A11 A13

A22 A23
S33


where S33 = A33 − A31A−111A13 − A32A−122A23 is a Schur complement.

In other words, in order to invert A, we need to execute three steps:
• Invert A11 to form A−111 . size ∼ N/2× N/2
• Invert A22 to form A−122 . size ∼ N/2× N/2
• Invert the Schur complement S33 = A33 − A31A−111A13 − A32A−122A23. ∼

√
N ×

√
N

Notice the obvious recursion!

Instead of inverting the matrix, one could construct its LU-factorization via an analogous
process. This is slightly cheaper, and can be more numerically stable. Recall that

A =


A11 A13

A22 A23
A31 A32 A33

 .
Now suppose that we have factorizations A11 = L11U11 and A22 = L22U22. Then

A =


L11U11 A13

L22U22 A23
A31 A32 A33

 =


L11

L22
A31U−111 A32U−122 I



I
I
S33



U11 L−111A13

U22 L−122A23
I

 .
So in order to compute the LU factorization of A, we need to:

• Compute the factorization A11 = L11U11. size ∼ N/2× N/2

• Compute the factorization A22 = L22U22. size ∼ N/2× N/2

• Compute the Schur complement S33 = A33 − A31U−111 L
−1
11A13 − A32U−122 L

−1
22A23.

Then compute the factorization S33 = L33U33. size ∼
√
N ×

√
N

Geometry processing — no computations performed
Nested dissection − level 0

Geometry processing — no computations performed
Nested dissection − level 1

Geometry processing — no computations performed
Nested dissection − level 2

Geometry processing — no computations performed
Nested dissection − level 3

Geometry processing — no computations performed
Nested dissection − level 4

Sparsity pattern of A with column wise grid ordering.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2121

Sparsity pattern of A with nested dissection ordering.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2121

Asymptotic cost of nested dissection — two dimensions
Let N denote the total number of nodes in the domain.

At the top level, the “divider” has ∼ N1/2 points and we need to perform dense inversion.

cost of processing level 0: ∼
(
N1/2)3 ∼ N2/3.

At the next finer level, there are 2 “dividers”, each having ∼ (N/2)1/2 points and we need
to perform dense inversion.

cost of processing level 1: ∼ 2
(

(N/2)1/2
)3 ∼ 2−1/2N2/3.

At the next finer level, there are 4 “dividers”, each having ∼ (N/4)1/2 points...

Cost of processing level 0: ∼ 1 ((N/1)1/2)3 ∼ 1−1/2N3/2

Cost of processing level 1: ∼ 2 ((N/2)1/2)3 ∼ 2−1/2N3/2

Cost of processing level 2: ∼ 4 ((N/4)1/2)3 ∼ 4−1/2N3/2

Cost of processing level 3: ∼ 8 ((N/8)1/2)3 ∼ 8−1/2N3/2

...
Total cost: ∼ N3/2

Asymptotic cost of nested dissection — two dimensions
Let N denote the total number of nodes in the domain.

At the top level, the “divider” has ∼ N1/2 points and we need to perform dense inversion.

cost of processing level 0: ∼
(
N1/2)3 ∼ N2/3.

At the next finer level, there are 2 “dividers”, each having ∼ (N/2)1/2 points and we need
to perform dense inversion.

cost of processing level 1: ∼ 2
(

(N/2)1/2
)3 ∼ 2−1/2N2/3.

At the next finer level, there are 4 “dividers”, each having ∼ (N/4)1/2 points...

Cost of processing level 0: ∼ 1 ((N/1)1/2)3 ∼ 1−1/2N3/2

Cost of processing level 1: ∼ 2 ((N/2)1/2)3 ∼ 2−1/2N3/2

Cost of processing level 2: ∼ 4 ((N/4)1/2)3 ∼ 4−1/2N3/2

Cost of processing level 3: ∼ 8 ((N/8)1/2)3 ∼ 8−1/2N3/2

...
Total cost: ∼ N3/2

Asymptotic cost of nested dissection — two dimensions
Let N denote the total number of nodes in the domain.

At the top level, the “divider” has ∼ N1/2 points and we need to perform dense inversion.

cost of processing level 0: ∼
(
N1/2)3 ∼ N2/3.

At the next finer level, there are 2 “dividers”, each having ∼ (N/2)1/2 points and we need
to perform dense inversion.

cost of processing level 1: ∼ 2
(

(N/2)1/2
)3 ∼ 2−1/2N2/3.

At the next finer level, there are 4 “dividers”, each having ∼ (N/4)1/2 points...

Cost of processing level 0: ∼ 1 ((N/1)1/2)3 ∼ 1−1/2N3/2

Cost of processing level 1: ∼ 2 ((N/2)1/2)3 ∼ 2−1/2N3/2

Cost of processing level 2: ∼ 4 ((N/4)1/2)3 ∼ 4−1/2N3/2

Cost of processing level 3: ∼ 8 ((N/8)1/2)3 ∼ 8−1/2N3/2

...
Total cost: ∼ N3/2

Asymptotic cost of nested dissection — two dimensions
Let N denote the total number of nodes in the domain.

At the top level, the “divider” has ∼ N1/2 points and we need to perform dense inversion.

cost of processing level 0: ∼
(
N1/2)3 ∼ N2/3.

At the next finer level, there are 2 “dividers”, each having ∼ (N/2)1/2 points and we need
to perform dense inversion.

cost of processing level 1: ∼ 2
(

(N/2)1/2
)3 ∼ 2−1/2N2/3.

At the next finer level, there are 4 “dividers”, each having ∼ (N/4)1/2 points...

Cost of processing level 0: ∼ 1 ((N/1)1/2)3 ∼ 1−1/2N3/2

Cost of processing level 1: ∼ 2 ((N/2)1/2)3 ∼ 2−1/2N3/2

Cost of processing level 2: ∼ 4 ((N/4)1/2)3 ∼ 4−1/2N3/2

Cost of processing level 3: ∼ 8 ((N/8)1/2)3 ∼ 8−1/2N3/2

...
Total cost: ∼ N3/2

Asymptotic cost of nested dissection — three dimensions
Let N denote the total number of nodes in the domain.

At the top level, the “divider” has ∼ N2/3 points and we need to perform dense inversion.

cost of processing level 0: ∼
(
N2/3)3 ∼ N2.

At the next finer level, there are 2 “dividers”, each having ∼ (N/2)2/3 points and we need
to perform dense inversion.

cost of processing level 1: ∼ 2
(

(N/2)2/3
)3 ∼ 2−1/3N2.

At the next finer level, there are 4 “dividers”, each having ∼ (N/4)1/2 points...

Cost of processing level 0: ∼ 1 ((N/1)2/3)3 ∼ 1−1N3/2

Cost of processing level 1: ∼ 2 ((N/2)2/3)3 ∼ 2−1N3/2

Cost of processing level 2: ∼ 4 ((N/4)2/3)3 ∼ 4−1N3/2

Cost of processing level 3: ∼ 8 ((N/8)2/3)3 ∼ 8−1N3/2

...
Total cost: ∼ N2

To summarize, the costs of classical nested dissection are:

Build stage Solve stage Memory
2D O(N3/2) O(N logN) O(N logN)

3D O(N2) O(N4/3) O(N4/3)

The algorithm we have described is well-established, and goes under names such as
“nested dissection methods” and “multifrontal methods”.

Highly optimized software libraries are available, MUMPS, Pardiso, etc.
Note that while all examples shown here involves the simplest possible grids, there is no
conceptual problem in handling more general grids. There are of course algorithmic
issues, how do you find the best cuts, etc, but very good algorithms exist.

These codes are in 2D very efficient for moderate N (say up to N ∼ 107).

In 3D, performance is not quite what one could wish — parallelization is challenging.

Also, high order stencils cause much worse practical performance.

References: Several books, including, Direct Methods for Sparse Matrices by Iain Duff
(1987), Direct Methods for Sparse Linear Systems, by Tim Davis (2006), etc.

How can we improve the complexity?
It turns out that while the Schur complements are dense, they are rank-structured.
Let us return to our basic model problem:

Ω1 Ω2

Ω3
Recall that the coefficient
matrix is tessellated as

A =


A11 A13

A22 A23
A31 A32 A33

 .
First consider the case of the standard 5-point stencil:

[Au](k) =
1
h2

(4u(k)− u(ks)− u(ke)− u(kn)− u(kw))

Recall the definition of the Schur complement: S3 = A33 − A31A−111A13 − A32A−122A23

The cost of an LU-factorization is dominated by the cost of factoring the dense Schur
complement of size

√
N ×

√
N at the top level.

Question: Can this step be accelerated?

Answer: Yes, it turns out that S3 is often rank-structured.

7

7

6

6

6

6

6

6

6

6

6

6

6

6

Ranks structure of S
3
. acc=1.00e−05 nside=400 type=orig

Plain 5-point stencil. Relative accuracy = 10−5.

13

13

12

12

12

12

10

10

11

11

11

11

10

10

Ranks structure of S
3
. acc=1.00e−10 nside=400 type=orig

Plain 5-point stencil. Relative accuracy = 10−10.

0 50 100 150 200
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Singular values of the (2,3) block of S
3

s
s
(j
)/

||
S

3
||

j

Singular values of the top-right quadrant of S3 (plain 5-point stencil).

Maybe the reason for the extreme decay is some peculiarity of the plain 5-point stencil.
Possibly that it has very smooth (constant!) coefficients?

Next, let us try a grid conduction problem:

[Au](k) = αk,ke

(
u(k)−u(ke)

)
+αk,kn

(
u(k)−u(kn)

)
+αk,kw

(
u(k)−u(kw)

)
+αk,ks

(
u(k)−u(ks)

)
,

where αk,` is the conductivity of the link connecting nodes k and `.

This is a purely discrete problem, there is really no “underlying” PDE here.

First, we’ll draw the conductivities from a uniform distribution on [1,2].

21

21

18

18

19

19

17

17

17

17

17

17

16

16

Ranks structure of S
3
. acc=1.00e−10 nside=400 type=rcon

Random conductivity network, αk,j ∈ U([1,2]). Relative accuracy = 10−10.

0 50 100 150 200
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Singular values of the (2,3) block of S
3

s
s
(j
)/

||
S

3
||

j

Singular values of the top-right quadrant of S3 (random network, αk,j ∈ U([1,2])).

We again do a grid conduction problem:

[Au](k) = αk,ke

(
u(k)−u(ke)

)
+αk,kn

(
u(k)−u(kn)

)
+αk,kw

(
u(k)−u(kw)

)
+αk,ks

(
u(k)−u(ks)

)
,

where αk,` is the conductivity of the link connecting nodes k and `.

Now, let us crank up the aspect ration, set αk,j = 10−βk,j where βk,j ∈ U([0,10])

In other words, the conductivities will be drawn at random in the interval [10−10,1].

12

12

10

10

9

9

9

9

9

9

9

9

7

7

Ranks structure of S
3
. acc=1.00e−10 nside=400 type=rcom

Random conductivity network, high aspect ratio. Relative accuracy = 10−10.

0 50 100 150 200
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Singular values of the (2,3) block of S
3

s
s
(j
)/

||
S

3
||

j

Singular values of the top-right quadrant of S3 (high aspect ratio random network).

Next, let us try a Helmholtz problem.

Define the discrete Laplace operator via

[Lu](k) =
1
h2

(4u(k)− u(ks)− u(ke)− u(kn)− u(kw))

and then the Helmholtz operator via

A = L− κ2I,

where κ is the wave-number.

A representative solution to the Helmholtz problem with κ = 10, (divider is 1.6λ high).

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

A solution to the Helmholtz equation, kh = 10.00 (divider = 1.59 lambda)

x
2

u

Ranks for Helmholtz, divider is 1.6λ, accuracy = 10−10.

13

13

12

12

12

12

10

10

11

11

11

11

10

10

Rank structure of S
3
. acc=1.00e−10 nside=400 (Helmholtz: side = 1.59 lambda)

Singular values for Helmholtz, divider is 1.6λ.

0 50 100 150 200
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Singular values of the (2,3) block of S
3
 (Helmholtz: side = 1.59 lambda)

s
s
(j
)/

||
S

3
||

j

Ranks for Helmholtz, divider is 40λ, accuracy = 10−10.

44

44

29

29

29

29

18

18

20

20

20

20

18

18

Rank structure of S
3
. acc=1.00e−10 nside=400 (Helmholtz: side = 40.11 lambda)

Singular values for Helmholtz, divider is 40λ.

0 50 100 150 200
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Singular values of the (2,3) block of S
3
 (Helmholtz: side = 40.11 lambda)

s
s
(j
)/

||
S

3
||

j

A representative solution to the Helmholtz problem with κ = 252, (divider is 40λ high).

Factors that influence the rank structure

Disclaimer: This topic is not well understood ...

• For Laplace-type problems, the ranks are consistently small.

• Smoothness of coefficients do not seem to matter at all.
The exponential decay is preserved for “diffusive networks” with no PDE analog.

• Fairly insensitive to precise form of operator (e.g. convection diffusion).

• For problems with oscillatory solutions, the rank increases as the wave-length shrinks.

• Some theory exists, but it is quite weak→ opportunity for more work!

So how fast does the algebra for handing Schur complements have to be?

Suppose that the cost of inverting (or factoring) an m×m Schur complement S is ∼ mα.

Then the asymptotic costs of nested dissection get reduced as follows:
Cost of processing level 0: ∼ (N1/2)α ∼ Nα/2

Cost of processing level 1: ∼ 2 ((N/2)1/2)α ∼ 21−α/2Nα/2

Cost of processing level 2: ∼ 4 ((N/4)1/2)α ∼ 41−α/2Nα/2

Cost of processing level 3: ∼ 8 ((N/8)1/2)α ∼ 81−α/2Nα/2
...
If α > 2, then the cost is ∼ Nα/2.
If α = 2, then the cost is ∼ N logN.
If α < 2, then the cost is ∼ N.

For problems in 2D, we can easily manipulate Sτ in ∼ N
(
logN

)2 operations.

So how fast does the algebra for handing Schur complements have to be? — 3D

Suppose that the cost of inverting (or factoring) an m×m Schur complement S is ∼ mα.

Then the asymptotic costs of nested dissection get reduced as follows:
Cost of processing level 0: ∼ (N2/3)α ∼ N2α/3

Cost of processing level 1: ∼ 2 ((N/2)2/3)α ∼ 21−2α/3N2α/3

Cost of processing level 2: ∼ 4 ((N/4)2/3)α ∼ 41−2α/3N2α/3

Cost of processing level 3: ∼ 8 ((N/8)2/3)α ∼ 81−2α/3N2α/3

...
If α > 3/2, then the cost is ∼ N2α/3.
If α = 3/2, then the cost is ∼ N logN.
If α < 3/2, then the cost is ∼ N.

For problems in 3D, we can manipulate Sτ in ∼ N
(
logN

)2 operations.

As a closing note, let us reformulate the scheme slightly.

The version we will present now is in essence analogous to the nested dissection
scheme just presented, but takes a much more “physical” and “geometric” approach (as
opposed to a linear algebraic approach).

The reason we reformulate it is to prepare the ground for direct solvers for integral
equations.

I1

I2

I3

boundary of D

I2

I3

boundary of D

(a) (b)
Labeling of nodes for extracting a patch D inside the grid. D is marked by a green dashed line. A line

connecting two nodes corresponds to a non-zero entry in the stiffness matrix. (a) The nodes in D are

colored, with red marking the boundary nodes in I2 and blue marking the interior nodes in I1. (b) The

nodes in I1 have been eliminated and the lines show non-zero entries in the coefficient matrix.

I1

I2

I3

boundary of D

I2

I3

boundary of D

Consider the linear system
A11 A12
A21 A22 A23

A32 A33



u1
u2
u3

 =


f1
f2
f3

 .
Eliminating u1 we obtain the reduced system[

S22 A23
A32 A33

][
u2
u3

]
=

[
f̃2
f3

]
where S22 = A22 − A21A−111A12 and f̃2 = f2 − A21A−11 f1.

Let us consider a square grid with
24× 24 = 576 nodes.

Let us consider a square grid with
24× 24 = 576 nodes.

We split it into a grid of 4×4 = 16 patches.

Step 1: Eliminate all internal nodes in the leaf boxes.

Step 1

⇒

Step 2: Join the leaves by pairs to form larger boxes. Eliminate all nodes that have now
become interior nodes in the larger boxes.

Step 2

⇒

Step 3: Merge the boxes created in Step 2 in pairs, and eliminate.

Step 3

⇒

Step 4: Merge the boxes created in Step 3 in pairs, and eliminate.

Step 4

⇒

Step 5: Merge the boxes created in Step 4 in pairs, and eliminate.

Step 5

⇒

Then solve the system
S1u1 = f̃1

by brute force!

What does the “merge” operation look like?

I1 I3 I4 I2
Dw De

(a) (b) (c)

(a) Labeling of nodes for the merge operation. The nodes in I1 and I3 are round, and the
nodes in I2 and I4 are square. The hollow nodes are interior to the union of the two
boxes Dw and De.

(b) Connections between nodes before the merge.

(c) Connections between nodes after eliminating the interior (hollow) nodes.

What does the “merge” operation look like?

I1 I3 I4 I2
Dw De

Partition the index sets: I(w) = I1 ∪ I3, and I(e) = I2 ∪ I4.

Partition the Schur complements: S(w) =

[
S11 S13
S31 S33

]
, and S(e) =

[
S22 S24
S42 S44

]
.

Then the global equilibrium equation reads


S11 A12 S13 0
A21 S22 0 S24
S31 0 S33 A34
0 S24 A43 S44




u1
u2
u3
u4

 =


f1
f2
0
0

 .

Eliminate u3 and u4: S =

[
S11 A12
A21 S22

]
−

[
S13 0
0 S24

] [
S33 A34
A43 S44

]−1 [
S31 0
0 S42

]
.

Summary

1. Construct a quad-tree: Partition the grid into a hierarchy of boxes.

2. Process the leaves: For each leaf box in the tree, construct its Schur complement.

3. Hierarchical merge: Loop over all levels of the tree, from finer to smaller. For each box
on a level, compute its Schur complement by merging the (already computed) Schur
complements of its children.

4. Process the root of the tree: After completing Step 3, the Schur complement for the
entire domain is available. Invert (or factor) it to construct the solution operator.

Remark: For simplicity, the algorithm is described in a level-by-level manner (process all
leaves first, then proceed one level at a time in going upwards). In fact, there is flexibility
to travel through the tree in any order that ensures that no node is processed before its
children. Since all Schur complements can be discarded once their information has been
passed on to a parent, smarter orderings can greatly reduce the memory requirements.

Bibliography: See website! L. Grasedyck, S. Le Borne, and R. Kriemann (2007),
Martinsson (2009), J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li (2009) and many
following papers by Xia et al, Gillman (2011), Schmitz & Ying (2012), Gillman &
Martinsson (2014), Ho & Ying (2014), current work by Eric Darve’s group, . . .

