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is demonstrated.
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1. Introduction

In this paper we will consider the solution of an elliptic problem of form

−div
(
a(x)∇u(x)

) + V (x)u(x) = f (x) on Ω, u = 0 on ∂Ω, (1)

on a Cartesian domain Ω in R
3.

There are two main classes of solvers for sparse linear systems arising from elliptic partial different equations: itera-
tive [1] and direct [2] methods. Iterative methods are arguably more competitive. However, the number of iterations to
convergence can be quite large for problems where the coefficients a(x) exhibit large contrast (large variations in magni-
tude for different areas of the domain) and sudden changes.

Direct methods have a much more predictable computation cost. However, in order to be efficient, one has to choose a
reordering that reduces fill-in of non-zeros in the factors. Finding the optimal ordering (especially for matrices arising from
problems in three dimensions) typically requires graph-theoretic approaches such as the (approximate) minimum degree
algorithm [3] while a reasonably good reordering can be determined using hierarchical partitioning [4]. In three dimensions
the most efficient direct methods, such as the nested dissection methods [2,5–7], have a factorization cost that scales like
O(N2) where N is the number of degrees of freedom.

Recently, it has been observed in [8,9] that fill-in blocks of the LDLt factorization are highly compressible using the
H-matrix [10] or hierarchical semiseparable matrix frameworks [11] and thus the calculations can be done much more
efficiently. In two dimensions Xia et al. [8] showed how to combine the nested dissection method with hierarchical semisep-
arable matrices and we have recently used a similar approach in [12] where nested dissection with hierarchical matrix
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algebra for the frontal matrix was applied to the general case of unstructured and adaptive meshes. This paper will show
how to extend this line of work to three dimensional problems while maintaining almost linear O(N) complexity. When
only single digit accuracy is required, the resulting algorithm can be used as a direct solver for quite general elliptic prob-
lems, as demonstrated by the numerical results. When better accuracy is desired, our approach can serve as highly efficiently
preconditioner when combined with standard iterative solvers.

We would like to mention that fast solvers of this type have also been developed for linear systems for boundary
integral equations. To name a few examples, in [13] an essentially linear complexity algorithm is presented for the 2D
non-oscillatory integral equations, while an O(N1.5) algorithm has appeared recently in [14] for the 3D non-oscillatory
case. Fast direct solvers for oscillatory kernels are still unavailable both in 2D and 3D.

The rest of the paper is organized as follows. Section 2 shows the hierarchical domain decomposition used in this
paper. We describe in Section 3 the nested dissection factorization based on this domain decomposition and show how that
achieves the O(N2) complexity. In Section 4 we show how hierarchical matrix algebra is used to improve the algorithm by
replacing the usual matrix representation and operations with the more efficient hierarchical ones. The complexity of our
algorithm is discussed in Section 5 for two different approaches to determining the structure of the hierarchical matrices
used. Finally, numerical results are provided in Section 6 to demonstrate the efficiency of both approaches.

2. Domain decomposition

To simplify the discussion, we assume that the domain Ω is [0,1]3. A uniform Cartesian grid of size m × m × m is intro-
duced to discretize the problem. The hierarchical domain decomposition used here is essentially the octree structure used
in most nested dissection algorithms. However, we describe this decomposition in some detail since we impose additional
hierarchical structure in order to lay the foundation for the hierarchical structure placed on the frontal matrix, which is
coupled to the hierarchical domain decomposition.

Here, we assume that m = P 2Q + 1 where P is a positive integer of O(1) and Q is also an integer which will turn out
to be the depth of the hierarchical decomposition. Out of the m3 = (P 2Q + 1)3 nodes in total, some lie on the boundary of
the domain and there are N = (P 2Q − 1)3 nodes in the interior.

Eq. (1) is often discretized with a finite difference or a finite element scheme. In the finite element case, each cell of
our Cartesian grid is subdivided into 6 tetrahedra. Based on this tetrahedral mesh, we can define piecewise linear basis
functions {φκ(x)}, one for each interior node κ . Each basis function takes the value 1 at the node κ and zero at the rest.
The discrete version of (1) under this discretization is given by

Mu = f ,

where u and f are vectors formed by the combination of all the uκ and fκ , and M is a sparse matrix with values given by

(M)κλ =
∫

[0,1]3

∇φκ(x) · a(x)∇φλ(x) + V (x)φκ(x)φλ(x)dx. (2)

Due to the locality of the piecewise linear finite element functions, (M)κλ is non-zero only if the nodes κ and λ are adjacent
to each other.

2.1. Leaf level

We divide the domain Ω into 23Q subdomains at level Q , each labeled by

DQ ;i, j,k =
[

i

2Q
,

i + 1

2Q

]
×

[
j

2Q
,

j + 1

2Q

]
×

[
k

2Q
,

k + 1

2Q

]
,

for 0 � i, j,k < 2Q using 2Q + 1 equally spaced planes at coordinate value 0
2Q , 1

2Q , 2
2Q , . . . , 2Q

2Q in each dimension. Some
nodes will lie on the boundary of the subdomains and will be shared with their neighbors. The set of (P + 1) × (P + 1) ×
(P + 1) nodes (at the domain boundary subdomains may however contain fewer nodes) in each subdomain DQ ;i, j,k will be
denoted by

VQ ;i, j,k, where 0 � i, j,k < 2Q .

Some nodes will be contained solely within one subdomain and will be in the subdomain’s interior, while those shared with
other subdomains will be on the subdomain’s boundary. If a node’s position is divisible by P in some direction it will be on
a subdomain boundary otherwise it will be in a subdomain interior. The nodes in the interior of one subdomain DQ ;i, j,k do
not contribute via M to the values in the interior of another subdomain. Since the entry Mκλ is non-zero only when κ and
λ are adjacent to each other, the boundary layer between subdomains is sufficient to decouple the nodes in the interior of
each subdomain at level Q from those in another subdomain at the same level.

Another way of looking at the set of nodes that make up each subdomain can be obtained if we divide the P 2Q + 1
nodes 0,1,2, . . . , P 2Q in the x-direction into 2Q +1 + 1 groups of alternating sizes 1 and P − 1, that is node 0 in group 0,
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nodes 1, . . . , P −1 in group 1, node P in group 2, nodes P +1, . . . ,2P −1 in group 3, until eventually node 2Q P is in group
2Q +1. That is, all the nodes whose position X is a multiple of P are in the even groups and the other nodes in between are
in the odd groups. Now perform the same division into these alternating groups in the y- and z-directions.

A node is in even or odd groups for a particular direction depending on the divisibility of that node’s position by P . Thus
every node will be in a group (i, j,k) for 0 � i, j,k � 2Q +1 where i is the group from the x-direction grouping, j the group
from the y-direction and k the group from the z-direction. These different sets of nodes on the last level Q are called leaf
elements and labeled by

EQ ;i, j,k, where 0 � i, j,k � 2Q +1.

Now, depending on the number of even or odd i, j,k in the element’s label, we call it a corner, segment, facet or volume
element. Thus an element can be

• Corner element, which consists of a single node and is of size 1 by 1 by 1.
• Segment element, which extends in 1 basis direction and is of size 1 by 1 by P − 1 (or permutation).
• Facet element, which extends in 2 basis directions and is of size 1 by P − 1 by P − 1 (or permutation).
• Volume element, which extends in all 3 basis directions, and is of size P − 1 by P − 1 by P − 1.

These names have geometric significance because one can also think of the various ways the planes parallel to the axes can
intersect. If we consider the parity of the index (i, j,k) in turn, there are 23 = 8 different types of nodes.

Element i (mod 2) j (mod 2) k (mod 2)

Corner 0 0 0

x-direction segment 1 0 0
y-direction segment 0 1 0
z-direction segment 0 0 1

x-parallel facet 0 1 1
y-parallel facet 1 0 1
z-parallel facet 1 1 0

Volume 1 1 1

Each subdomain at level Q is made up of 3 × 3 × 3 = 27 elements

VQ ;i, j,k =
⊎

0�i′, j′,k′�2

EQ ;2i+i′,2 j+ j′,2k+k′ ,

where we have used the symbol � to indicate a disjoint union so as to distinguish it from the more general union. These
nodes in VQ ;i, j,k can be further classified as interior and boundary ones as follows:

• IQ ;i, j,k: interior set that consists of the nodes from the single volume element.
• BQ ;i, j,k: boundary set that consists of the nodes from 6 facet elements (2 parallel to each axis), 12 segment elements

(4 parallel to each axis), and 8 corner elements.

More precisely, VQ ;i, j,k = IQ ;i, j,k �BQ ;i, j,k with

IQ ;i, j,k:= EQ ;2i+1,2 j+1,2k+1

for the interior and

BQ ;i, j,k:=
⊎

0 � i′, j′, k′ � 2
(i′, j′,k′) �=(1,1,1)

EQ ;2i+i′,2 j+ j′,2k+k′

for the boundary of the subdomain. In Fig. 1 we illustrate an example of 8 overlapping leaf subdomains distinguishing
between the different kinds of elements and showing how the subdomains meet. Notice that each node is plotted as a
small cube in Fig. 1 in order to be able to show corner and segment elements more clearly. It should not be confused with
the actual subdomain that contains these nodes.

2.2. Non-leaf levels

Based on what we introduced so far, we can start to define the node sets and elements for all other levels from bottom
up. Suppose that the node sets Vq+1;i, j,k , Iq+1;i, j,k , Bq+1;i, j,k and the elements Eq+1;i, j,k are already defined for subdomains
Dq+1;i, j,k on level q + 1. We first introduce subdomains Dq;i, j,k on level q, defined by



230 P.G. Schmitz, L. Ying / Journal of Computational Physics 258 (2014) 227–245
Fig. 1. Left: 8 overlapping leaf subdomains of size 93. Right: the interior structure. The four types of elements are shown as well.

Dq;i, j,k:=
⋃

0 � i′, j′, k′� 1

Dq+1;2i+i′,2 j+ j′,2k+k′

for 0 � i, j,k < 2q . It is clear that the union of all Dq;i, j,k on level q is equal to the domain Ω .
For a fixed subdomain Dq;i, j,k on level q, its node set Vq;i, j,k is given by

Vq;i, j,k:=
⋃

0 � i′, j′, k′� 1

Bq+1;2i+i′,2 j+ j′,2k+k′ , (3)

i.e., the union of the boundary set of the child subdomains. This set can be further partitioned into two subsets: interior
Iq;i, j,k and boundary Bq;i, j,k , depending on the location of the nodes. In terms of the elements defined on level q + 1, the
sets Iq;i, j,k and Bq;i, j,k can be written as

Iq;i, j,k:=
⊎

1 � i′, j′, k′ � 3
at least one 2

Eq+1;4i+i′,4 j+ j′,4k+k′ (4)

and

Bq;i, j,k:=
⊎

0 � i′, j′, k′ � 4
at least one 0 or 4

Eq+1;4i+i′,4 j+ j′,4k+k′ , (5)

respectively. A simple counting shows that Vq;i, j,k consists of 117 elements from level q + 1: 36 facets, 54 segments and 27
corners. They are allocated into Iq;i, j,k and Bq;i, j,k as follows:

• Interior Iq;i, j,k consists of the nodes from 19 elements: 12 facets, 6 segments, and 1 corner common to the 8 siblings.
• Boundary Bq;i, j,k consists of the nodes from 98 elements: 24 facets, 48 segments, and 26 corners which are shared

with other subdomains.

To give an example, the elements of Bq;i, j,k on a slice parallel to the z-axis are displayed in the following table.

Eq+1;4i,4 j+4,4k Eq+1;4i+1,4 j+4,4k Eq+1;4i+2,4 j+4,4k Eq+1;4i+3,4 j+4,4k Eq+1;4i+4,4 j+4,4k

Eq+1;4i,4 j+3,4k Eq+1;4i+1,4 j+3,4k Eq+1;4i+2,4 j+3,4k Eq+1;4i+3,4 j+3,4k Eq+1;4i+4,4 j+3,4k

Eq+1;4i,4 j+2,4k Eq+1;4i+1,4 j+2,4k Eq+1;4i+2,4 j+2,4k Eq+1;4i+3,4 j+2,4k Eq+1;4i+4,4 j+2,4k

Eq+1;4i,4 j+1,4k Eq+1;4i+1,4 j+1,4k Eq+1;4i+2,4 j+1,4k Eq+1;4i+3,4 j+1,4k Eq+1;4i+4,4 j+1,4k

Eq+1;4i,4 j,4k Eq+1;4i+1,4 j,4k Eq+1;4i+2,4 j,4k Eq+1;4i+3,4 j,4k Eq+1;4i+4,4 j,4k

As we shall soon see, in order to support the algorithms to be described below, one needs to introduce a decomposition
of Bq;i, j,k in terms of elements on its own level (level q), in addition to the one on its child level (level q + 1). To that
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Fig. 2. The node set of a subdomain on level q is the union of the boundary sets of its children subdomains on level q + 1. Left and right: the elements
of the boundary part. Middle: the elements of the interior part. Notice that for the boundary part, elements on level q + 1 are merged together to form
elements on level q.

end, we define new elements Eq;i, j,k on level q on top of the elements on level q + 1 as follows. Each new corner element
consists of a single corner from level q + 1, for example

Eq;2i,2 j,2k:= Eq+1;4i,4 j,4k. (6)

Each new segment element consists of two segments and a corner from the child level, for example

Eq;2i+1,2 j,2k:= Eq+1;4i+1,4 j,4k � Eq+1;4i+2,4 j,4k � Eq+1;4i+3,4 j,4k, (7)

and similarly for segments in the other directions. Finally, each new facet element consists of 4 facets, 4 segments, and 1
corner from the child level, for example

Eq;2i,2 j+1,2k+1 := Eq+1;4i,4 j+1,4k+1 � Eq+1;4i,4 j+2,4k+1 � Eq+1;4i,4 j+3,4k+1

� Eq+1;4i,4 j+1,4k+2 � Eq+1;4i,4 j+2,4k+2 � Eq+1;4i,4 j+3,4k+2

� Eq+1;4i,4 j+1,4k+3 � Eq+1;4i,4 j+2,4k+3 � Eq+1;4i,4 j+3,4k+3. (8)

The new facet elements parallel to the other axes are defined similarly. This combination is more complicated than the
situation in two dimensions (see [12]), as there many more pieces to consider and there are more ways to order the
combination of child elements in a parent facet. In Fig. 2 we show exactly how the boundary elements of the child level
(level q + 1) are combined to form larger elements one the parent level (level q).

In terms of the new elements introduced on level q, the slice parallel to the z-axis that we showed earlier can be now
represented as follows.

Eq;2i,2 j+2,2k Eq;2i+1,2 j+2,2k Eq;2i+2,2 j+2,2k

Eq;2i,2 j+1,2k Eq;2i+1,2 j+1,2k Eq;2i+2,2 j+1,2k

Eq;2i,2 j,2k Eq;2i+1,2 j,2k Eq;2i+2,2 j,2k

Given the newly introduced elements on level q, we have an alternative decomposition for a boundary set Bq;i, j,k:

Bq;i, j,k:=
⊎

0�i′, j′,k′�2

Eq;2i+i′,2 j+ j′,2k+k′ . (9)
at least one 0 or 2
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In this way, the 98 elements of Bq;i, j,k on level q + 1 are combined into 26 combined elements on level q as follows.

Once we finish the definitions on level q, we can repeat the whole process on level q − 1, and so on until we reach the
top level. For each level q, we also define

Iq:=
⊎
i, j,k

Iq;i, j,k and Bq:=
⋃
i, j,k

Bq;i, j,k. (10)

Using this definition, (3), (4), and (5), we have

Bq+1 = Iq ∪ Bq. (11)

Note that at level q = 0, as there are no boundary nodes due to the Dirichlet boundary condition, we have B1 = I0.

3. Factorization approach with nested dissection

The nested dissection algorithm was proposed in [5] in 1973 and it quickly became the standard algorithm for solving
definite sparse linear systems. Many extensions, such as the famous multifrontal methods [6], have been proposed for more
general systems. We refer to the classical references [2,15,7] for more details about the nested dissection methods. Though
the algorithm in this section follows the classical nested dissection method, the presentation is adapted to the hierarchical
decomposition in Section 2. Section 3.1 describes the construction of the factorization for M , while Section 3.2 explains how
to use the factorization to solve linear system Mu = f .

3.1. Construction step

The method essentially constructs and stores a block LDLt transform of M in an efficient way. The basic tool for this
process is Schur complement. For a symmetric matrix(

A Bt

B C

)
,

the Schur complement step gives rise to a block LDLt factorization of form(
A Bt

B C

)
=

(
I

B A−1 I

)(
A

S

)(
I A−1 Bt

I

)
, (12)

where S = C − B A−1 Bt . In the following discussion, we shall use the notation M : I → B to denote that the matrix M maps
a vector defined on node set I to a vector defined on node set B.

Let us start from the leaf level, level Q . For each cube DQ ;i, j,k , we can then consider the small matrix M Q ;i, j,k :
VQ ;i, j,k → VQ ;i, j,k , which is the restriction of M to the cube DQ ;i, j,k , formed via

(M Q ;i, j,k)κλ =
∫

DQ ;i, j,k

∇φκ(x) · a(x)∇φλ(x) + V (x)φκ(x)φλ(x)dx, (13)

where κ and λ are restricted to the nodes in VQ ;i, j,k since all basis functions centered on nodes outside DQ ;i, j,k are zero
inside DQ ;i, j,k . Comparing (13) with (2), we see that the sum of M Q ;i, j,k over all possible i, j, k (after suitable injection) is
equal to the full matrix M .

Start from level Q and fix a leaf cube DQ ;i, j,k and its matrix M Q ;i, j,k . The decomposition of the nodes VQ ;i, j,k =
IQ ;i, j,k �BQ ;i, j,k leads to a 2 × 2 block matrix decomposition of M Q ;i, j,k using (12)

M Q ;i, j,k =
(

A Q ;i, j,k Bt
Q ;i, j,k

B Q ;i, j,k C Q ;i, j,k

)
= L Q ;i, j,k

(
A Q ;i, j,k

S Q ;i, j,k

)
Lt

Q ;i, j,k, (14)

where A Q ;i, j,k : IQ ;i, j,k → IQ ;i, j,k , B Q ;i, j,k : IQ ;i, j,k → BQ ;i, j,k , C Q ;i, j,k : BQ ;i, j,k → BQ ;i, j,k , S Q ;i, j,k : BQ ;i, j,k → BQ ;i, j,k , and
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L Q ;i, j,k =
(

IIQ ;i, j,k

B Q ;i, j,k A−1
Q ;i, j,k IBQ ;i, j,k

)
.

With a slight abuse of notation, we can extend L Q ;i, j,k to the whole node set by setting it to be identity on the complement
of VQ ;i, j,k . Since the interior node sets IQ ;i, j,k are disjoint for different blocks DQ ;i, j,k , each one of L Q ;i, j,k commutes with
another distinct L Q ;i′, j′,k′ and as a result L Q := ∏

i, j,k L Q ;i, j,k is well defined. We will develop a suitable ordering for the
rows and columns of M as we proceed. Recall from (10) that

IQ :=
⊎
i, j,k

IQ ;i, j,k and BQ :=
⋃
i, j,k

BQ ;i, j,k.

Since the union of the two is the entire set of nodes for which we constructed M , we have the following 2 × 2 block form
for M

M =
(

A Q Bt
Q

B Q C Q

)
= L Q

(
A Q

S Q

)
Lt

Q , (15)

where A Q : IQ → IQ , B Q : IQ → BQ , C Q : BQ → BQ , S Q : BQ → BQ , and S Q = C Q − B Q A−1
Q Bt

Q . Comparing (15) and (14),
we see that A Q is the sum of A Q ;i, j,k over all possible (i, j,k) after suitable injection and similarly S Q is the sum of S Q ;i, j,k
over all possible (i, j,k).

In order to further factorize S Q in (15), let us study the subdomains on level Q − 1. For each subdomain DQ −1;i, j,k at
level Q − 1, we define

M Q −1;i, j,k : VQ −1;i, j,k → VQ −1;i, j,k

to be the sum of the Schur complement matrices S Q ;i′, j′,k′ : BQ ;i′, j′,k′ → BQ ;i′, j′,k′ over the eight children of subdomain
DQ −1;i, j,k . Comparing this with the above statement about S Q being the sum of S Q ;i′, j′,k′ over all possible (i′, j′,k′),
we see that S Q is equal to the sum of all M Q −1;i, j,k on level Q − 1 (if we extend M Q −1;i, j,k by setting it to be zero outside
VQ −1;i, j,k). Recall that its node set VQ −1;i, j,k decomposes into the interior IQ −1;i, j,k and the boundary BQ −1;i, j,k . This leads
naturally to a 2 × 2 block form for M Q −1;i, j

M Q −1;i, j,k :=
(

A Q −1;i, j,k Bt
Q −1;i, j,k

B Q −1;i, j,k C Q −1;i, j,k

)
, (16)

where A Q −1;i, j : IQ −1;i, j,k → IQ −1;i, j,k , B Q −1;i, j : IQ −1;i, j,k → BQ −1;i, j,k , and C Q −1;i, j : BQ −1;i, j,k → BQ −1;i, j,k . We can
perform a Schur complement on this 2 × 2 block matrix at this level:

M Q −1;i, j,k = L Q −1;i, j,k

(
A Q −1;i, j,k

S Q −1;i, j,k

)
Lt

Q −1;i, j,k.

Similarly to what we did for level Q , by recalling the relationship from (10) and (11)

IQ −1:=
⊎
i, j

IQ −1;i, j,k and BQ −1:=
⋃
i, j

BQ −1;i, j,k

and defining

L Q −1:=
∏
i, j,k

L Q −1;i, j,k,

we can rewrite the above computation as factoring S Q into

S Q = L Q −1

(
A Q −1

S Q −1

)
Lt

Q −1,

where A Q −1 and S Q −1 are the sums of all possible A Q −1;i, j,k and S Q −1;i, j,k , respectively, after suitable injection. As a
result we get a new factorization of M:

M = L Q

(
A Q

S Q

)
Lt

Q = L Q L Q −1

( A Q

A Q −1
S Q −1

)
Lt

Q −1Lt
Q .

Continuing in this fashion over all levels from bottom up, we eventually reach level 0 with I0 = B1, B0 = ∅ (due to the
zero Dirichlet boundary condition), and

M = L Q L Q −1 · · · L1

⎛
⎜⎜⎜⎜⎝

A Q

A Q −1

. . .

A1

⎞
⎟⎟⎟⎟⎠ Lt

1 · · · Lt
Q −1Lt

Q , (17)
A0
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where Aq : Iq → Iq . Each of the Aq , q = 0, . . . ,Q will, in fact, be block diagonal if we treat

Iq:=
⊎

0�i, j,k<2q

Iq;i, j,k,

taking each of the sets Iq;i, j,k in turn for our ordering. Inverting the factorization (17) gives a factorization of M−1:

M−1 = L−t
Q L−t

Q −1 · · · L−t
1

⎛
⎜⎜⎜⎜⎜⎝

A−1
Q

A−1
Q −1

. . .

A−1
1

A−1
0

⎞
⎟⎟⎟⎟⎟⎠ L−1

1 · · · L−1
Q −1L−1

Q . (18)

We see now that creating the factorized form of M happens in two stages:

1. At the leaf level Q , for each subdomain DQ ;i, j,k , we calculate M Q ;i, j,k which is the restriction of M to DQ ;i, j,k .
2. Move up level by level. For each level q and each subdomain Dq;i, j,k , combine the eight matrices Sq+1;i′, j′,k′ of its

children into the parent Mq;i, j,k .

This is detailed in Algorithm 1. In the description, we use the MATLAB notation for referring to submatrices. For example,
if G ∈ R

|J |×|J | is a matrix whose rows and columns are labeled by the index set J then for X ,Y ⊂J we write G(X ,Y) ∈
R

|X |×|Y| for the submatrix of G consisting of the rows in X and columns in Y . Manipulating this matrix affects the
underlying values in G .

Algorithm 1 (Setup the factorization of M).

1: for i = 0 to 2Q − 1 do
2: for j = 0 to 2Q − 1 do
3: for k = 0 to 2Q − 1 do
4: Calculate the matrix M Q ;i, j,k .
5: Invert A Q ;i, j,k using dense matrix methods.
6: S Q ;i, j,k ← C Q ;i, j,k − B Q ;i, j,k A−1

Q ;i, j,k Bt
Q ;i, j,k

7: Store A−1
Q ;i, j,k , B Q ;i, j,k and S Q ;i, j,k

8: end for
9: end for

10: end for
11: for q = Q − 1 to 1 do
12: for i = 0 to 2q − 1 do
13: for j = 0 to 2q − 1 do
14: for k = 0 to 2q − 1 do
15: Start with zero Mq;i, j,k
16: for i′ = 0,1 do
17: for j′ = 0,1 do
18: for k′ = 0,1 do
19: Add Sq+1,2i+i′,2 j+ j′,2k+k′ to Mq;i, j,k(Bq+1;2i+i′,2 j+ j′,2k+k′ ,Bq+1;2i+i′,2 j+ j′,2k+k′ )
20: end for
21: end for
22: end for
23: Decompose Mq;i, j,k into 2 × 2 block structure Mq;i, j = ( Aq;i, j Bt

q;i, j

Bq;i, j Cq;i, j

)
.

24: Invert Aq;i, j,k .
25: Sq;i, j,k ← Cq;i, j,k − Bq;i, j,k A−1

q;i, j,k Bt
q;i, j,k

26: Store A−1
q;i, j,k and Bq;i, j,k

27: Store Sq;i, j,k
28: end for
29: end for
30: end for
31: end for
32: Start with zero M0;0,0,0
33: for i′ = 0,1 do
34: for j′ = 0,1 do
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35: for k′ = 0,1 do
36: Add S1,i′, j′,k′ to M0;0,0,0(B1;i′, j′,k′ ,B1;i′, j′,k′ )
37: end for
38: end for
39: end for
40: Invert A0;0,0,0.
41: Store A0;0,0,0.

In terms of computational complexity, this factorization of M can be constructed in O(N2) steps and solving Mu = f by
applying (18) to f takes O(N4/3) steps. To see this, first notice that the number of levels is Q + 1 and the total number of
unknowns is N 
 (P 2Q )3 = P 323Q . For each level q, let us use s(q) 
 P 2Q −q to denote the side length of the subdomain
at this level. Since each facet has size s(q)2, the largest matrices appearing at level q in the algorithm have size O(s(q)2).
Thus the cost of multiplying and inverting matrices for each subdomain will be O(s(q)6), while the cost of a matrix–vector
multiply will be O(s(q)4). Thus the total cost, suppressing constants, for setting up the factorization for M and M−1 is

Q∑
q=0

s(q)623q =
Q∑

q=0

(
P 2Q −q)6

23q = O
(
N2).

3.2. Solution step

To solve the original Mu = f , we compute u = M−1 f using (18):

M−1 f = L−t
Q L−t

Q −1 · · · L−t
1

⎛
⎜⎜⎜⎜⎜⎝

A−1
Q

A−1
Q −1

. . .

A−1
1

A−1
0

⎞
⎟⎟⎟⎟⎟⎠ L−1

1 · · · L−1
Q −1L−1

Q f ,

where L−1
q = ∏

i, j,k L−1
q;i, j,k . First we apply each L−1

Q ;i, j,k in L−1
Q , then those from L−1

Q −1 and so on. Once we have completed

all the L−1
q;i, j,k , we apply the block diagonal A−1

q;i, j,k , and then all the L−t
q;i, j,k . If we write uIq;i, j,k for the (consecutive) group

of components of u corresponding to the set of nodes Iq;i, j,k , and similarly uBq;i, j,k , then the solution can be calculated as

in Algorithm 2 where we combine the action of A−1
q;i, j,k and L−1

q;i, j,k since they are the only ones which affect uIq;i, j,k on the
first pass from the leaves to the root of the tree.

Algorithm 2 (Solving Mu = f ).

1: u ← f
2: for q = Q to 1 do
3: for i = 0 to 2q − 1 do
4: for j = 0 to 2q − 1 do
5: for k = 0 to 2q − 1 do
6: uIq;i, j,k ← A−1

q;i, j,kuIq;i, j,k

7: uBq;i, j,k ← uBq;i, j,k − Bq;i, j,k A−1
q;i, j,kuIq;i, j,k

8: end for
9: end for

10: end for
11: end for
12: uI0;0,0,0 ← A−1

0;0,0,0uI0;0,0,0

13: for q = 1 to Q do
14: for i = 0 to 2q − 1 do
15: for j = 0 to 2q − 1 do
16: for k = 0 to 2q − 1 do
17: uIq;i, j,k ← uIq;i, j,k − A−1

q;i, j,k Bt
q;i, j,kuBq;i, j,k

18: end for
19: end for
20: end for
21: end for
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Fig. 3. Left: Examples of facets meeting in a line or at a point for the facets in Iq;i, j,k . Right: self-interaction of a facet.

Following the discussion for the complexity of the matrix factorization, we see that applying M−1 to a vector is

Q∑
q=0

s(q)423q =
Q∑

q=0

(
P 2Q −q)4

23q = O
(
N4/3)

as claimed.

4. Acceleration with hierarchical matrix algebra

The O(N2) complexity of Algorithm 1 has always been the main bottleneck of the matrix factorization method with
nested dissection for three dimensional problems. From the complexity analysis, we see that the main contribution comes
from the operations on the matrices Aq;i, j,k , Bq;i, j,k , Cq;i, j,k , and Sq;i, j,k . Therefore, it is desirable to speed up these opera-
tions through accurate approximation which can potentially bring down the complexity. For two dimensional problems, Xia
et al. [8] reduced the complexity of nested dissection method by using hierarchical semiseparable matrices [11] to represent
these matrices. Due to the almost linear cost of the operations of the hierarchical semiseparable matrices, this allows the
Schur complements at all levels to be performed in almost linear time.

In [12], we instead used the hierarchical matrix algebra to represent those matrices appearing in the factorization process.
The main observation of the hierarchical matrix algebra is that, for a wide class of matrices, such as the Green’s functions of
elliptic operators, a submatrix that corresponds to the interaction between two well-separated groups of nodes (or degrees
of freedom) is numerically low-rank. Based on this observation, one can then organize all nodes with a hierarchical structure
and whenever two subsets of nodes are well-separated in the hierarchical structure the submatrix associated with these
two subsets is stored in a low-rank factorized form. This hierarchical compression scheme allows one to store an n × n
hierarchical matrix in O(n log n) storage space. By exploiting the low-rank factorized form in the computation, all basic
matrix operations, such as matrix–vector product, matrix–matrix addition, matrix–matrix product, and matrix-inversion,
can be carried out in almost linear cost as well. In the following discussion of our algorithm, we will use these operations
as black boxes. We refer the readers to Section 4.4 for a brief discussion about their implementations and to [10] for
complete details.

Following our previous work in [12], we propose to represent Aq;i, j,k , Bq;i, j,k , Cq;i, j,k , and Sq;i, j,k using the hierarchical
matrix algebra. In order to do that, first we need to identify the hierarchical structure for organizing the nodes of these
matrices. As shown in (4) and (5), the node set Iq;i, j,k and Bq;i, j,k of a subdomain Dq;i, j,k can be viewed as a disjoint union
of elements at level q + 1, each of which is a disjoint union of elements at level q + 2, and so on (see (6), (7), (8)). This
naturally provides the hierarchical structure for the matrices Mq;i, j,k , Aq;i, j,k , Bq;i, j,k , Cq;i, j,k , and Sq;i, j,k . For example, since
Vq;i, j,k is the disjoint union of 117 elements on level q + 1, Mq;,i, j,k : Vq;i, j,k → Vq;i, j,k can be viewed as a 117 × 117 block
matrix. Following this, Aq;,i, j,k : Iq;i, j,k → Iq;i, j,k is a 19 × 19 block matrix, Bq;,i, j,k : Bq;i, j,k → Iq;i, j,k is a 98 × 19 block
matrix, and Cq;i, j,k : Bq;i, j,k → Bq;i, j,k and Sq;i, j,k : Bq;i, j,k → Bq;i, j,k are both 98 × 98 block matrices.

The hierarchical matrix decomposition for these matrices depends on the choices made as to which blocks are repre-
sented by hierarchical matrices and which are represented by low rank matrices in factorized form. The choice of which
blocks can be represented by low rank matrices depends on the admissibility criteria [10,16] used. In our case this reveals
itself in the choice to represent the interaction between different facets larger than a chosen size as one low rank matrix in
factorized form instead of the hierarchical matrix required by the lack of separation between the facets.

Well separated facets, such as those on the top and bottom of a cube, will always have their interaction represented in
factorized form. For nearby facets, such as the 12 facet elements in the interior Iq;i, j,k of Dq;i, j,k , we distinguish between
two different settings (as illustrated in Fig. 3), depending on whether the minimum distance between two facets is achieved

• at a point, or
• on a line.
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Fig. 4. Type I hierarchical division of adjacent Facets of the cube and associated interaction matrix with low rank matrices in factorized form represented

by the symbol or .

Those facets achieving minimum distance at a point will always have a low rank interaction and be represented in factorized
form. On the other hand, those facets achieving minimum distance in a line will be represented in two different ways

• Type I: by a hierarchical matrix,
• Type II: in a factorized form.

The advantage of Type I is that the growth of the maximum rank is better controlled, but at the cost of a deeper and more
complex hierarchical decomposition.

4.1. Interaction between adjacent facets

In Fig. 4, we illustrate a possible Type I hierarchical division of two adjacent facets of a subdomain. This situation appears
between two level q + 1 facets in Aq;i, j,k or two level q facets in Sq;i, j,k . The main pieces of the subdivision of a facet are
the 4 sub-facets labeled 1,3,7,9 for one facet and a, c, g, i for the other. The interactions of the adjacent sub-facets (for
example between 1 and a and between 7 and c) are represented hierarchically while the rest are low-rank. Considering the
further subdivisions of 1 and a the sub-sub-facets show the same pattern of interaction with 1̃ & ã and 7̃ & c̃ represented
densely while the others are low-rank. Depending on the sizes of the remaining sub-sub-facets one might continue further
subdivision and use a hierarchical representation instead of the dense one. For Type II we would have one big factorized
matrix as the two large adjacent (undivided) facets meet in a line.

4.2. Self-interaction

For the case of facet self-interaction let us consider a facet that has been divided into the 9 child elements as shown in
Fig. 5 (dominated by the 4 sub-facets labeled 1, 3, 7 and 9) with subfacet 1 further divided into 1̃ to 9̃. If we only look at
the interaction of 4 subfacets of a facet we would see the following patterns

Facet

3 4

1 2

�

Type I

H H H F
H H F H
H F H H
F H H H

or

Type II

H F F F
F H F F
F F H F
F F F H

,

where F and H stand for factorized and hierarchical blocks, respectively.
In Type I only the interaction between facets diagonally opposite each other is represented in factorized form, while in

Type II only the self-interaction is represented in hierarchical form.

4.3. Merge step of the S matrices

There is one extra complication regarding the S matrices in lines 19 and 36 of Algorithm 1. For example at line 19, the
matrix Sq+1,2i+i′,2 j+ j′,2k+k′ : Bq+1;2i+i′,2 j+ j′,2k+k′ → Bq+1;2i+i′,2 j+ j′,2k+k′ is a 98 × 98 block matrix, since Bq+1;2i+i′,2 j+ j′,2k+k′
is the disjoint union of 98 elements at level q + 2. However, on the right hand side, the matrix Mq;i, j,k : Vq;i, j,k → Vq;i, j,k
has a block matrix structure based on the partitioning of Vq;i, j,k into elements at level q + 1. Clearly, there is a one-level
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Fig. 5. Hierarchical division of self-interaction of a facet of the cube in Type I and Type II matrix decompositions. This would correspond to one part on the
block diagonal of the full interaction matrix for the 6 facets (and the rest of the cube) shown in Fig. 6 and Fig. 7.

mismatch between the left-hand side and the right-hand side of this step. Therefore, one needs to reorganize the matrix
Sq+1,2i+i′,2 j+ j′,2k+k′ : Bq+1;2i+i′,2 j+ j′,2k+k′ → Bq+1;2i+i′,2 j+ j′,2k+k′ into a block structure in terms of the elements on level
q + 1. This is possible since the boundary set Bq+1;2i+i′,2 j+ j′,2k+k′ can also be written as a disjoint union of 26 elements on
the same level, following (9). As a result, we need to reinterpret a 98 × 98 block matrix corresponding to the 98 boundary
elements at level q + 2 as 26 × 26 submatrices corresponding to the 26 merged boundary elements at level q + 1. The 8 cor-
ner nodes are unaffected. The segment-corner-segment merging into a parent segment is reflected in combining 3 × 3 = 9
submatrices into a new submatrix. Merging of 9 child elements in a plane into a parent facet corresponds to 9 × 9 = 81
submatrices being joined together. The node ordering we built up from the leaf level ensures that, in fact, these 9 subma-
trices form a contiguous 3 × 3 group and the 81 submatrices form a contiguous 9 × 9 group. Thus no rearrangement of the
rows and columns of Sq+1,2i+i′,2 j+ j′,2k+k′ is required. In terms of the hierarchical matrix representation, if the new subma-
trix should have a hierarchical representation this is achieved by simply reinterpreting the 3 × 3 (in the case of a parent
segment) or 9 × 9 (in the case of a parent facet) submatrices as part of a new hierarchical matrix decomposition. On the
other hand if the new submatrix should be represented in factorized form, this conversion can be performed efficiently
using standard QR and SVD [10].

From the above discussion, it is clear that the hierarchical decomposition of the geometric elements defined in Section 2
naturally corresponds to the hierarchical decomposition of the matrices for those sets of nodes discussed here.

4.4. Implementation details

We refer the reader to [10] for details on hierarchical matrix operations but present some aspects of our implementation
here (as we did in [12]). The underlying dense matrix algebra is performed using BLAS and LAPACK (in particular Intel’s
MKL), with matrix inversion of dense matrices performed via LU-factorization.

In general, operations on hierarchical matrices proceed using two main ideas: block matrix algebra and recursion. If one
were to multiply two matrices of Type II such as those illustrated in Fig. 5, the off-diagonal matrices are in factorized form
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and the on-diagonal matrices are again hierarchical, so the block form of the product would contain sums of products of
matrices in factorized form and matrices in hierarchical form. Since we know the hierarchical structure of the final product
we can use that information to guide the calculation of each block in the product.

Matrix addition and subtraction. Consider the sum of two factorized matrices G and H with their factorizations denoted by
G ≈ U V t and H ≈ XY t . Then,

G + H ≈ U V t + XY t = (U |X)(V |Y )t .

Notice that the new factorized form for the sum will have an increased size compared to those for G and H . In order
to prevent the size of these low rank factorizations from increasing with each addition the two new matrices need to be
recompressed. So if U has width r1 and X has width r2, then using (U |X) = Q R and (V |Y ) = Q̃ R̃ , the sum we seek is
Q R(Q̃ R̃)t = Q (R R̃t)Q̃ t , and we need only perform the SVD, R R̃t = ŪΣ̄ V̄ t , on a square matrix of size r1 + r2. Finally the
resulting factors for the sum will have width r′ � r1 + r2 if we keep r′ of the singular values (and associated columns from
Ū and V̄ ) for our truncated SVD. Thus

(U |X)(V |Y )t = Q ŪΣ̄︸ ︷︷ ︸
width r′

(Q̃ V̄︸︷︷︸
width r′

)t .

The sum of two hierarchical blocks is done recursively since they are two sums of a similar nature to our original
sum, but of smaller size. Eventually the diagonal blocks are dense and standard matrix addition is performed. The sum
of a factorized and a hierarchical block is done by decomposing the factorized block to match the substructure of the
hierarchical block and proceeding recursively. The only remaining non-standard operation will be the sum of a dense and a
factorized block which is done by reforming the dense version of the factorized block, then doing the dense addition and
re-factorization if needed.

Matrix multiplication. For simplicity, we only consider the case where there are 4 main blocks, two on-diagonal hierarchical
matrices and two off-diagonal factorized ones since these contain all the essential ingredients required for the more complex
cases with multiple off diagonal blocks.

Let us consider the product of two matrices G and H with their off-diagonal factorizations given by Gi, j ≈ Ui, j(V i, j)
t

and Hi, j ≈ Xi, j(Yi, j)
t . In block matrix form, the product is

(
G1,1 G1,2
G2,1 G2,2

)
·
(

H1,1 H1,2
H2,1 H2,2

)
=

(
G1,1 H1,1 + G1,2 H2,1 G1,1 H1,2 + G1,2 H2,2
G2,1 H1,1 + G2,2 H2,1 G2,1 H1,2 + G2,2 H2,2

)
.

First, the off-diagonal block

G1,1 H1,2 + G1,2 H2,2 ≈ G1,1 X1,2(Y1,2)
t + U1,2(V 1,2)

t H2,2.

The computation G1,1 X1,2 or (V 1,2)
t H2,2 is multiplication of a hierarchical matrix with a dense matrix which has a small

number of columns and proceeds by decomposing the dense matrix into blocks to match the substructure of the hierarchical
matrix and proceeding recursively. The multiplication of a matrix in factorized form and a dense matrix proceeds using in
turn the two dense matrices that make up the factorized form. The next stage involves a dense matrix with a small number
of rows and proceeds in a similar fashion. Once they are done, the remaining sum is then similar to the matrix addition
described above. The other off-diagonal block G2,1 H1,1 + G2,2 H2,1 is done in the same way.

Next, consider the diagonal blocks. Take G1,1 H1,1 + G1,2 H2,1 as an example. The first part G1,1 H1,1 is done using recur-
sion. The second part is

G1,2 H2,1 ≈ U1,2 (V 1,2)
t X2,1︸ ︷︷ ︸ (Y2,1)

t .

Performing the middle product first minimizes the computational cost. The final sum G1,1 H1,1 + G1,2 H2,1 is done using a
matrix addition algorithm similar to the one described above. The same procedure can be carried out for the computation
of G2,1 H1,2 + G2,2 H2,2.

Matrix inversion. The inversion of hierarchical matrices is again done via recursion. Row operations are performed on the
block structure of a hierarchical matrix, which requires the inversion of the matrices on the diagonal, which will again be
hierarchical. Eventually the on-diagonal matrices will be dense and their inversion is performed using standard methods.
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Table 1
The maximum ranks observed for the factorized low rank approximations when
using the Type I and Type II hierarchical matrix decompositions for the matrices
A−1, B and S in Algorithm 1 for −�u = f with εr = 10−6 and εa = 10−12. For
Type I these grow like O(log s(q)) while for Type II they grow like O(s(q)).

Type I

A−1 20 27 29
B 25 33 26
S 25 33 41

s(q) 15 31 63

Type II

A−1 63 122 234
B 75 161 –
S 75 161 331

s(q) 15 31 63

5. Complexity analysis

Let us investigate the complexity of Algorithms 1 and 2 when hierarchical matrix algebra is used. We recall that a leaf
node at level Q contains (P + 1) × (P + 1) × (P + 1) nodes and N 
 (P 2Q )3 = P 323Q = O(23Q ) since P = O(1). Here all
logarithms are taken with base 2.

The cost of the hierarchical matrix operations depends on the depth of the decomposition tree and the ranks of the
factorized approximations. The cost of a matrix–vector multiplication scales as O(rn log n), where r is the maximum rank of
the factorized parts, n is the dimension of the matrix, and log n comes from the number of subdivision levels (depth of the
decomposition tree) of the hierarchical representation of the matrix involved. The cost of the matrix–matrix multiplication
as well as matrix inversion scales like O(r2n(log n)2) instead [17].

The size of the matrices involved for a given subdomain is dominated by the number of nodes in the covered facets.
Fix a cube at Dq;i, j,k at level q. For Aq;i, j,k , there are 12 facets and the matrix dimension n is of order O(s(q)2). Similarly
the corresponding Bq;i, j,k and Sq;i, j,k will also have size n = O(s(q)2). The formation of the Schur complement for each
subdomain involves an inversion of a hierarchical matrix, two multiplications of hierarchical matrices, and an addition of
hierarchical matrices.

The difference in complexity for the Type I and Type II hierarchical matrix decompositions comes from the differing rank
r of the factorized parts. We have observed in numerical experiments that the rank of the factorized parts for the Type I
decomposition grows like O(log s(q)) while that for Type II grows like O(s(q)) as shown in Table 1.

5.1. Type I hierarchical matrices

In this subsection we consider the complexity when using matrices of Type I such as that illustrated in Fig. 6. We have
seen numerically that the rank r of the factorized parts will be approximately O(log s(q)) at level q. Allowing slightly
stronger growth let us consider poly-logarithmic growth O(logρ s(q)) for some integer ρ � 1. Consider first the complexity
of Algorithm 1. The cost for each subdomain is, suppressing constants,

O
(
r2(log n)2n

) = O
((

log s(q)
)2ρ · (log s(q)

)2 · s(q)2) = O
((

log s(q)
)2ρ+2 · s(q)2)

as n =O(s(q)2). Summing over 23q Schur complements at each level and Q levels in total, we obtain

Q∑
q=0

(Q − q)2ρ+2 · 22(Q −q) · 23q = O
(
23Q ) = O(N).

In Algorithm 2, the dominant cost is the matrix vector multiplication in the hierarchical matrix form and for each cube on
level q, it takes

O
(
r2(log n)n

) = O
((

log s(q)
)2ρ · (log s(q)

) · s(q)2) = O
((

log s(q)
)2ρ+1 · s(q)2)

steps. Therefore, the total cost over all subdomains and levels is equal to

Q∑
q=0

(Q − q)2ρ+1 · 22(Q −q) · 23q = O
(
23Q ) = O(N)

again. In summary, both algorithms are of linear complexity.
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Fig. 6. Type I hierarchical division of the interaction matrix of a cube boundary (merged S2;1,1,1) with 31 × 31 facets switching from hierarchical to dense
matrices for size 7 × 7 sub-facets.

5.2. Type II hierarchical matrices

In this subsection we consider the complexity when using matrices of Type II such as that illustrated in Fig. 7. Consider
first the complexity of Algorithm 1. Since the observed ranks are proportional to the segment lengths (r 
 s(q)), the cost for
each subdomain will be

O
(
r2(log n)2n

) = O
(
s(q)2 · (log s(q)

)2 · s(q)2) = O
((

log s(q)
)2 · s(q)4).

Summing over 23q Schur complements at each level and Q levels in total gives us

Q∑
q=0

(Q − q)2 · 24(Q −q) · 23q = O
(

Q 224Q ) = O
(
N4/3 log2 N

)
.

Next let us consider the complexity of Algorithm 2. The matrix vector multiplication in the hierarchical matrix form for
each cube takes

O
(
r(logn)n

) = O
(
s(q) · (log s(q)

) · s(q)2) = O
(
log s(q) · s(q)3)

steps. Therefore, the number of steps of Algorithm 2 in Type II case is equal to

Q∑
q=0

(Q − q) · 23(Q −q) · 23q = O
(

Q 23Q ) = O(N log N).

Comparing with the Type I hierarchical matrices, the construction cost of Type II matrix is O(N1/3 log2 N) times more
expensive, while the solution cost is only a factor of O(log N) higher. As we shall see in the numerical results displayed
in the next section, the second approach turns out to have better performance in the regime we could test. Eventually the
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Fig. 7. Type II hierarchical division of the interaction matrix of a cube boundary (merged S2;1,1,1) with 31 × 31 facets where the factorized form is used for
all facet-facet interactions except self-interaction, switching from hierarchical to dense for 7 × 7 sub-facets.

algorithm with better scaling will provide better results but that may be for very large N (ignoring the log2 N factor the
growth rate of O(N4/3) means that if N increases by 8 then N4/3 increases by about 16. Thus if the algorithm with worse
scaling is C times faster for a particular N , it loses that advantage by the time N has increased by a factor of about C3).

A similar analysis using the memory cost for hierarchical matrices, also given in [17] as O(rn log n), shows that the
matrix memory use for Type I is O(N) while that for Type II is O(N log2 N). Additional storage is required for information
about the decomposition and nodes, for example, but this grows linearly.

6. Numerical results

All numerical tests are performed on a 2.13 GHz processor. The C++ implementation is purely serial utilizing only one
core. Execution times are measured in seconds for the setup phase (Algorithm 1) and the solve phase (Algorithm 2).

To test our algorithm, we setup the factorized form of M and use it to solve 100 random problems generated as follows:
Select x� ∈ R

N , with independent standard normal components, and calculate f = Mx� using the sparse original M . Then
solve Mx = f and determine the worst error over those 100 samples, for each of the following error measures

Relative error Energy error Residual error
‖x − x�‖2

‖x�‖2

‖x − x�‖M

‖x�‖M

‖Mx − f ‖2

‖M‖2‖x�‖2 + ‖ f ‖2

,

where ‖x‖M = 〈x, Mx〉 is the norm induced by M .
Following [10] we construct the low rank approximations at the hierarchical levels using common matrix manipulations

such as QR and SVD. During these procedures we keep only (the part of the decomposition corresponding to) those singular
values

1. larger than the absolute cutoff εa and
2. within the relative cutoff εr of the largest singular value.
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Table 2
A comparison of the Type I and Type II hierarchical matrix decomposition approach to solving −�u = f using εa = 10−12 and εr = 10−6 and P = 4.
Memory use is shown relative to Type I with N = 313 and the runtimes are in seconds.

Q N Type I Type II

Setup Solve Memory Setup Solve Memory

3 313 29 791 270.61 0.78 1.0 97.23 0.44 0.9
4 633 250 047 3882.93 9.26 6.3 1268.40 4.92 6.6
5 1273 2 048 383 43 359.12 89.52 55.5 15 072.42 47.12 55.0

Errors Relative Energy Residual Relative Energy Residual

29 791 2.24e−07 3.12e−14 9.27e−10 4.76e−07 1.32e−13 1.91e−09
250 047 3.77e−07 4.67e−14 3.87e−10 7.69e−07 3.55e−13 1.16e−09

2 048 383 4.85e−07 5.98e−14 1.52e−10 1.11e−06 5.23e−13 4.90e−10

Table 3
A level by level breakdown of the time taken for the setup phase using the Type I hierarchical matrix decomposition approach to solving −�u = f using
εa = 10−12 and εr = 10−6 and P = 4. The ratios between the runtimes for different N are given.

Setup time contribution from calculations at each level Scaling ratios

313 → 633 633 → 1273

Level Matrix format N = 313 N = 633 N = 1273 8.4 8.2

Leaf Dense 2.23 18.63 159.40 8.4 8.6

s = 7 Hierarchical 16.71 141.35 1171.19 8.5 8.3
s = 15 Hierarchical 127.89 1351.53 12 009.16 10.6 8.9

s = 31 Hierarchical 123.78 1455.53 13 630.66 11.8 9.4
s = 63 Hierarchical – 915.88 9902.98 – 10.8
s = 127 Hierarchical – – 6485.64 – –

Addition and multiplication of hierarchical matrices also involves these kinds of truncated SVD. These two parameters,
εa and εr , can be varied depending on the specific problem and the desired accuracy of the output.

Test 1. In this test, we solve −�u = f with zero Dirichlet boundary condition. In Table 2 we compare the runtimes obtained
using the Type I and Type II hierarchical matrix decompositions with εa = 10−12 and εr = 10−6 and leaf level P = 4.

Now, the scaling observed in our experiments is close to the expected theoretical value for Type II but slightly off for
Type I. One clear reason is that the zero boundary conditions tend to reduce the amount of work required and disrupt the
expected scaling. If we consider the top level calculation with s = 63 when N = 633 we see that no calculation of S is
actually required while in the corresponding level of N = 1273 there are 8 calculations of S required. Even away from the
top level we should not expect the runtime for each level to scale exactly by 8 because the proportion of cubes touching the
domain boundary (which induce fewer calculations because of the zero boundary conditions) will not be the same when we
double the number of cubes along each axis. The scaling observed for an analogous calculation without the zero boundary
condition is much closer to the expected value.

In Table 3 we analyze the runtime scaling level by level for the Type I results of Table 2. We have broken down the time
devoted to calculations on each level of the domain decomposition. Note that the number of levels used increases with N .
We want to compare the increase in runtime with the increase in N as the problem size increases. We see that the ratio
for the runtime devoted to the dense leaf level is close to that for N . The ratio for the first hierarchical level is also very
good. Once we move to the next higher hierarchical level we see an increase in scaling. This is most pronounced at the last
level for N = 313 (indicated in bold) which is not yet the last one for N = 633. The ratio for the same level for 633 → 1273

is much closer to the theoretical value since we have not yet reached the last level. Note that this top level anomaly was
11.8 for the 313 → 633 size change but decreases to 10.8 for 633 → 1273. Also, the new top level for each size increase
contributes to the observed runtime being more than 8 times the previous size – at size N = 633 it is 24% of the runtime
and at size N = 1273 it is 15% – as the top level contributes a smaller and smaller fraction of the runtime for larger and
larger N both these effects should diminish.

Table 4 reports the result of the same problem, but now with the side length of the leaf subdomain P equal to 8. We see
that the runtime can be improved but at the cost of an increase in memory use. The difference in runtime between Type I
and Type II has reduced. However, the scaling is not as good as in the earlier example. This may be because there are fewer
hierarchical layers and so this example is further away from the asymptotic behavior.

Test 2. In this test, we solve −div(a(x)∇u) = f with a random a(x), which is independently set at each node from a uniform
distribution on [10−3,103]. In Table 5 we describe the results with again εa = 10−12 and εr = 10−6.

In the last set of results in Table 5 we use the Type I decomposition but a modified multiplication algorithm where
block multiplication that results in a low rank factorized result for the sum of products is computed using a randomized
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Table 4
A comparison of the Type I and Type II hierarchical matrix decomposition approach to solving −�u = f using εa = 10−12 and εr = 10−6 and P = 8.
Memory use is shown relative to the Type I with P = 4 and N = 313 and the runtimes are in seconds.

Q N Type I Type II

Setup Solve Memory Setup Solve Memory

3 313 29 791 47.40 0.25 1.5 29.57 0.23 1.2
4 633 250 047 1097.78 3.05 9.2 520.45 1.87 8.4
5 1273 2 048 383 15 369.18 30.79 77.4 7943.10 21.72 73.2

Table 5
To illustrate how we can handle non-identity a(x) we use an a(x) which is independently set at each node from a uniform distribution on [10−3,103] with
εa = 10−12 and εr = 10−6.

Q N Type I Errors Type II Errors

Setup Solve Relative Energy Residual Setup Solve Relative Energy Residual

3 313 29 791 47.26 0.26 2.75e−07 3.18e−14 8.50e−10 29.29 0.23 4.95e−07 1.74e−13 2.25e−09
4 633 250 047 1164.45 3.09 2.22e−06 7.57e−13 1.39e−09 539.57 2.43 1.51e−06 7.19e−13 1.56e−09
5 1273 2 048 383 166 54.83 31.16 1.75e−05 1.48e−11 2.11e−09 8216.00 23.44 6.02e−06 6.70e−12 1.60e−09

Q Prob. approx. Type I Errors

N Setup Solve Relative Energy Residual

3 313 29 791 22.65 0.26 6.17e−07 6.83e−14 1.17e−09
4 633 250 047 565.35 3.11 2.07e−06 5.06e−13 1.10e−09
5 1273 2 048 383 9709.58 31.13 1.71e−05 1.06e−11 1.80e−09

Table 6
A comparison of MUMPS and the Type II hierarchical matrix decomposition approach for Test 1 and Test 2. As before the runtimes are in seconds and the
memory use is relative.

N Test 1 Test 2

MUMPS Type II MUMPS Type II

Setup Mem. Setup Mem. Setup Mem. Setup Mem.

473 103 823 20.7 2.5 20.6 2.5
633 250 047 114.5 8.3 540.7 8.4 118.3 8.3 539.6 8.5
953 857 375 1326.5 45.5 1389.5 45.5

1273 2 048 383 7775.0 153.0 7943.1 73.2 7780.5 153.0 8216.0 73.4

approach. The block multiplications involved in the Schur complement computation S = C − B A−1 Bt have many parts to
the inner sum (recall the boundary has 98 components, and the majority of entries in the full S matrix correspond to
the 24 child facets) for each entry in the final product. So, for the entries in the hierarchical decomposition of S that are
known to have low rank factorized form, we can circumvent the usual matrix multiplication procedure and use the idea of
a probabilistic low rank approximation [18] to derive an approximation of those blocks in the product. This avoids deriving
any intermediate approximations in the sum of products that the usual block matrix multiplication requires. To calculate
the probabilistic low rank approximation one needs a good estimate of the expected rank but that can be derived from
preliminary calculations using the existing approach. Notice that this makes the Type I approach more competitive with the
Type II approach for our problem sizes.

6.1. Comparison with MUMPS

Now, in Table 6, we provide a comparison of the setup (factorization) stage with an existing multifrontal approach as
implemented in MUMPS [19] using the SCOTCH ordering [20], which is based on recursive nested dissection. MUMPS was
compiled for serial operation and run on one core to allow direct comparison with our results.

Note that runtime for MUMPS scales like O(N2) while the memory use scales like O(N4/3) and the runtimes for random
a(x) are slightly higher than those for constant a(x). While our approach is significantly slower for smaller sizes it is
competitive at N = 1273 with comparable runtimes to MUMPS and much better memory use.

7. Conclusion and future work

In this paper, we extend the work in [12] of combining nested dissection methods with hierarchical matrix algebra to
the three dimensional elliptic problems on a Cartesian grid. Two approaches are proposed based on different choices of
the hierarchical matrices employed. The solver using Type I hierarchical matrices has theoretically a linear complexity in
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terms of the number of unknowns, while the second solver based on Type II hierarchical matrices has an O(N4/3 log2 N)

construction cost and an O(N log N) solution time for each right hand side.
Our approach can be extended to unstructured meshes of tetrahedra and more general discretization schemes as we

detailed for the two dimensional case in [12]. The correct generalizations of corners and segments are required because
the subdomains may not meet in precisely the same regular manner as in the Cartesian case. Not only will the lengths of
segments vary on the same level but some corners (analogous to the generalized corner of [12]) will need to be composed
of multiple nodes to recover the relationship between the leaf elements of the decomposition. Also, a generalized segment
will be needed because the pattern of 4 subdomains of tetrahedra meeting precisely along a segment will not hold for
unstructured meshes – they may meet at a node which is only in tetrahedra from 3 different subdomains.

The algorithm can be adjusted to improve performance in the situation where a(x) and/or V (x) is perturbed locally
and repeated calculations are required – a calculated factorization could be largely reused as only the parents of the cubes
containing the nodes with changed values would have to be recalculated. Similarly one could reduce the amount of re-
calculation required in an h-adaptive mesh refinement system [21] as in [22] where new degrees of freedom could be
incorporated incrementally and only the parts of the mesh which have been refined (and their parents in the decompo-
sition tree) would require new calculations. The adaptive decomposition algorithm would have to be run alongside the
h-refinement to distribute the new degrees of freedom and form new leaf cubes as required. Extending this idea to the
degrees of freedom added and removed via a p-adaptive system one could eventually integrate with hp-adaptive systems.

We have not discussed parallelization of the calculations [23] but the hierarchical matrix algebra could be parallelized for
the individual multiplications and additions. Also since all of the calculations on the same level are independent they could
be performed in parallel. As long as there are more Dq;i, j,k per level than processors extensive inter-processor communica-
tion would be avoided. Only the uppermost levels would not lead to close to maximum speedup from parallelization. The
possible gains of parallelization have been demonstrated by large scale parallel multifrontal solvers such as MUMPS [19].

We have only demonstrated the approach for piecewise linear elements but one could generalize the approach to
work with different discretizations such as spectral elements or different methods such as the discontinuous Galerkin [24]
method. The support of the bases could also be increased at the cost of thicker border elements between subdomains.
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