
Finite Element Method (FEM)

• With finite differences, we approximate the equation, e.g.,

−d
2ũ

dx2
= f(x) −→ −δ

2uj
δx2

= fj, + BCs. (1)

• With the FEM, we approximate the solution, e.g.,

u(x) :=
n∑
j=1

ûjφj(x), XN
0 := span{φ1, . . . , φn}, (2)

where the φjs satisfy homogeneous BCs (say).

• We try to make the error, e(x) := ũ(x)− u(x), small.

1

Collocation

• One way to try to make the error small is to force the residual to
be zero at certain collocation points, xi:

r(x) := −d
2u

dx2
− f(x) = 0 at xi, i = 1, . . . , n. (3)

:= −d
2u

dx2
+

d2ũ

dx2
(4)

:= −d
2e

dx2
. (5)

• Clearly, r(x) ≡ 0 if u(x) = ũ(x).

• The residual is computable and is the only available measure of the error.

• Implementation of the collocation scheme is

−

φ′′1(x1) φ′′2(x1) · · · φ′′n(x1)

φ′′1(x2) φ′′2(x2) · · · φ′′n(x2)

...
...

φ′′1(xn) φ′′2(xn) · · · φ′′n(xn)

û1

û2

...

ûn

=

f1

f2

...

fn

(6)

• Q: If you were going to implement collocation, what would be a good set
of points?

2

Weighted Residual Techniques

• For several reasons, its better to make the residual small in a weighted
sense, rather than just enforcing r(x) = 0 at a few isolated points.

• A disadvantage of collocation is that it requires φj ∈ C1, i.e., twice dif-
ferentiable, which precludes piecewise-linear (FEM) basis functions. :(

• Another disadvantage is that it does not guarantee a best-fit approxima-
tion.

• Also, it does not yield a symmetric “stiffness” matrix (A := −D2).

• Moreover, Neumann and Robin BCs are not easy to implement
(many many papers on this very topic).

• For these reasons, the Weighted Residual Technique is strongly preferred.

3

Weighted Residual Method

• Here, rather than enforcing r(x) = 0 pointwise, we seek a solution
u(x) ∈ XN

0 such that r(x) ⊥ Y N for a suitably chosen Y N .

• We call XN
0 the trial space and Y N

0 the test space.

• Here, we define “⊥” in the following sense:

Let (f, g) :=

∫
Ω

f(x) g(x) dx. (7)

We say f ⊥ g if (f, g) = 0. (8)

• Q: Why would orthogonality imply a small residual ??

4

The WRT is essentially a method of undetermined coefficients.

• Consider the 1D Helmholtz equation with β > 0,

−d
2ũ

dx2
+ βũ = f(x), ũ(0) = ũ(1) = 0. (9)

• Seek an approximate solution u in a finite-dimensional trial space XN
0 ,

u ∈ XN
0 := span{φ1(x), φ2(x), . . . , φn(x)}, φj(0) = φj(1) = 0. (10)

(We use the subscript 0 on XN
0 to indicate that functions in this space

satisfy the homogeneous Dirichlet boundary conditions.)

5

• The trial solution is a linear combination of the basis functions φj(x)
with basis coefficients ûj,

u(x) =
n∑
j=1

φj(x)ûj. (11)

• The orthogonality condition is based on the standard L2 inner product.
Specifically, we require

0 =

∫ 1

0

v(x) r(x) dx =

∫ 1

0

v(x)

(
f +

d2u

dx2
− βu

)
dx ∀v ∈ Y N

0 (12)

or, ∫ 1

0

v(x)

(
−d

2u

dx2
+ βu

)
dx =

∫ 1

0

v f dx ∀v ∈ Y N
0 . (13)

(14)

• Note that if Y N
0 =span{ψi(x)}, i = 1, . . . , n and ψi(x) = δ(x− xi),

the Dirac delta function, then we recover collocation.

– That is, we are enforcing r(xi)=0.

6

Galerkin Method

• For the Poisson and Helmholtz equations, the optimal choice
is Y N

0 = XN
0 , which is the Galerkin method.

• It appears that u must be twice differentiable.
We can avoid this requirement through integration by parts.

• Let I denote the left-hand side of the preceding equation.

I =

∫ 1

0

(
−v(x)

d2u

dx2
+ βvu

)
dx (15)

=

∫ 1

0

(
dv

dx

du

dx
+ βvu

)
dx − vu′|10 (16)

=

∫ 1

0

(
dv

dx

du

dx
+ βvu

)
dx. (17)

• The boundary terms vanish because v = 0 at x = 0 and 1.

• We see that the number of derivatives on the trial (u) and
test (v) functions is now the same.

• They thus have the same (low) continuity requirements, which
is feasible because they are in the same space (Y N

0 ≡ XN
0).

7

• We denote the integral I as the energy (or “a”) inner-product,

a(v, u) :=

∫ 1

0

(
dv

dx

du

dx
+ βvu

)
dx. (18)

• a(·, ·) is symmetric, a(v, u) = a(u, v), and positive definite:

a(u, u) > 0∀u 6= 0. (19)

For β ≡ 0, a(u, u) = 0 only if u = constant, but the only constant in XN
0

is u = 0.

• Our discrete problem can be stated as,

Find u ∈ XN
0 such that

a(v, u) = (v, f) ∀v ∈ XN
0 . (20)

• Note that this statement is an identity for ũ (generally ũ 6∈ XN
0):

a(v, ũ) ≡ (v, f) (21)

which holds for all v for which the integrand is computable.

• Specifically, for the continuous problem, we refer to the formulation,
Find ũ ∈ H1

0 such that

a(v, ũ) = (v, f) ∀v ∈ H1
0, (22)

as the weak form, which means we are allowed to look for solutions that
are in a space that is larger than C1[Ω].

8

• Set of spaces commonly used for analysis of PDEs are Sobolev spaces.

• The most important ones for our purpose:

L2 =

{
v|
∫

Ω

v2 dx < ∞
}

(23)

H1 =

{
v| v ∈ L2,

∫
Ω

∇v · ∇v dx < ∞
}

(24)

H1
0 =

{
v| v ∈ H1, v(x)|∂ΩD

= 0
}

(25)

H1
b =

{
v| v ∈ H1, v(x)|∂ΩD

= vb(x)
}

(26)

XN
0 =

{
v| v ∈ H1

0 ∩ span{φ1 φ2 . . . φn}
}

(27)

(28)

• Note that H1
b is not closed.

Functions in this space cannot be represented as arbitrary linear combi-
nations of elements in this space. Usually, we pick one element from H1

b ,
say ub(x) and then seek our solution as u(x) = ub+u0(x), where u0 ∈ H1

0.

• Associated with these spaces we have the following inner products and
induced norms

L2 : (f, g)0 =
∫

Ω fg dx, ‖f‖ = [(f, g)]
1
2

H1 : (f, g)1 =
∫

Ω fg + ∇f · ∇g dx, ‖f‖1 = [(f, g)1]
1
2

(29)

9

• Returning to our differential equation, we have, for f ∈ L2,

(a) Find ũ ∈ H1
0 such that a(v, ũ) = (v, f) ∀v ∈ H1

0, (30)

(b) Find u ∈ XN
0 ⊂ H1

0 such that a(v, u) = (v, f) ∀v ∈ XN
0 . (31)

• Nominally, (b) completes our discretization.

• Once the finite-dimensional subspace XN
0 ⊂ H1

0 is identified
there are no more choices.

10

• Let’s summarize the results so far:

u(x) =
n∑
j=0

ujφj(x) ∈ XN
0 (32)

v(x) =
n∑
i=0

viφi(x) ∈ XN
0 . (33)

(34)

• For any v ∈ XN
0 ,

a(v, u) =

∫
Ω

∇v · ∇u dV = (v, f) :=

∫
Ω

v f dV. (35)

• Using the preceding expansions,

a(v, u) =
n∑
i=1

n∑
j=1

vi

[∫
Ω

∇φi · ∇φi dV
]
uj (36)

=
n∑
i=1

n∑
j=1

viaijuj (37)

= vTAu, (38)

where A = [aij] and

aij :=

∫
Ω

∇φi · ∇φi dV. (39)

11

• On the rhs, we have

(v, f) =
n∑
i=1

n∑
j=1

vi

∫
Ω

φif dV =:
∑
ij

vibi = vT b. (40)

• Combining these, we have, for all v ∈ lRn,

vTAu = vT b, (41)

or simply,

Au = b. (42)

(43)

• Note that A is SPD.

12

• There are of course many details...

• And, there is an issue that we generally cannot exactly integrate
the product of the data and the test functions, (v, f).

• We turn to some of those details momentarily, but first discuss
some optimality properties.

13

• Because XN
0 ⊂ H1

0, we can derive the following error relationship

Find u ∈ XN
0 ⊂ H1

0 such that, for all v ∈ XN
0 ,

a(v, u) = a(v, ũ) (44)

a(v, ũ) − a(v, u) = 0 (45)

a(v, ũ− u) = 0. (46)

• Which implies that e := ũ− u is a-orthogonal to XN
0 : e(x) ⊥a XN

0 :

ũ(x)

e(x)

u(x)

a
XN

0XXXXXXXXXXXXXXXXXXXX

�
��

�
��

�
��

�
��

��XXXXXXXXXXXXXXXXXXXX

�
��

�
��

�
��

�
��

��
�
�
�
�
�
�
�
�
�
�
�
�
��3

-

6

• Therefore, u(x) is the closest function in XN
0 to ũ(x) in the ‖ · ‖a norm.

– For any function w satisfying the homogeneous Dirichlet
conditions, w(0) = w(1) = 0, we define the “a-norm”

‖w‖a :=
√
a(w,w).

14

Finite Element Methods

• Finite elements (FEM) offer significant advantages over finite differences
regarding complex geometry, general boundary conditions, and guaran-
teed SPD properties (when the PDE is “SPD”).

• A key idea of the weighted residual technique is to express the numerical
solution as a linear combination of basis functions, φj(x)

u(x) =
n̄∑
j=1

uj φj(x), (47)

and to then find the unknown basis coefficients, uj, such that u(x) ap-
proximately solves the PDE.

• In (47), n̄ is the number of “global” basis functions, including ones that
are nonzero on the domain boundary, ∂Ω.

15

• For the finite element method, these basis functions will

(i) have compact support (i.e., vanish almost everywhere), and

(ii) be expressed in terms of expansions on individual patches
(elements).

• These local expansions take the form

u(x)|Ωe =

nv∑
j=1

uej lj(r), e = 1, . . . , E (48)

x|Ωe =

nv∑
j=1

xej lj(r), e = 1, . . . , E, (49)

where nv is the number of vertices associated with each element and E

is the number of finite elements.

• Each element Ωe is the image of Ω̂ under the transformation (49).

• Here, it is understood that r ∈ Ω̂ ⊂ lRd, d = 1, 2, or 3 being the number
of spatial dimensions for the PDE.

• In our applications, φj(x) and lj(r) are Lagrangian interpolants that sat-
isfy φi(xj) = δij and li(rj) = δij, which implies that u(xj) = uj and
uei = u(xej).

• That is, the basis coefficients are also grid point values.

• This choice makes it easy to enforce boundary conditions and function
continuity.

16

Global/Local Finite Element Bases

• The FEM is predicated on a representation of u(x) for all x ∈ Ω
that is generically of the form

u(x) =
n̄∑
j=1

uj φj(x). (50)

• A characteristic of the finite element method is that the region of support
(i.e., the region where φj 6= 0) is compact or finite.

• That is, it is typically a small subset of Ω.

• A single global basis function, φj(x) is illustrated in the accompanying
figure.

Figure 1: A global finite-element basis function, φj(x) in a complex domain. The basis function shown here
is piecewise linear on triangular elements.

• Note that φj(x) ≡ 0 outside the basis of support, which we denote as
the region in the neighborhood of xj.

17

• Specifically, we define each element, Ωe as one of the triangular patches
seen in the figure and we have that φj(x)|Ωe ≡ 0 unless xj ∈ Ωe. (Here,
we allow Ωe to include its boundary.)

• This compact support feature leads to sparse operators because most
of the basis functions are mutually orthogonal.

• If there is no element Ωe, e = 1, . . . , E containing both xi and xj, then∫
Ω

φi φj dV = 0 (51)

• Note that another advantage of the FEM is that integrals of the type
(51)
are readily computed as the sum of integrals over each element,∫

Ω

φi φj dV =
E∑
e=1

∫
Ωe

φi φj dV =
E∑
e=1

∫
Ω̂

φi φj J e dV (52)

• These local integrals are readily evaluated by working in a canonical
reference element, Ω̂, which is defined as the unit square or unit triangle,
depending on the underlying local expansions.

18

• As indicated in (52), integration on Ωe is effected by integrating over Ω̂
and using an appropriate Jacobian, J e, associated with the map from Ω̂
to Ωe.

19

• To compute integrals (derivatives, etc.) on Ω̂, we need local basis func-
tions.

• These are simply interpolation functions that allow one to accurately
interpolate grid point values onto any point in Ωe (here, Ω̂).

• For all of the FEM bases, the local representations are given by (48),
which is repeated here,

u(x)|Ωe =

nv∑
j=1

uej lj(r), e = 1, . . . , E (53)

where nv is the number of vertices in the reference element.

• For linear triangles, nv = 3. (Here, linear refers to the polynomial
order of the basis functions, lj(r, s), rather than whether the triangle
has straight or “curved” sides.)

• If we take Ω̂ to be the right triangle with vertices (r, s) = (0,0), (0,1),
and (1,0), then the basis functions are

l1(r, s) = 1 − r − s (54)

l2(r, s) = r (55)

l3(r, s) = s, (56)

which are illustrated in the figure below.

Figure 2: Linear basis functions on the unit-triangle.

20

Biquadratic and Bilinear Elements

• We can also have quadrilateral elements, such as bilinear, biquadratic,
or, in general, of order N , which can be arbitrarily high as is the case
for the spectral element method (SEM) [Patera, 84].

• The figure below shows the nine biquadratic basis functions for (r, s) in
the unit square, Ω̂ := [−1, 1]2.

21

• The bilinear counterparts to the biquadratic elements are illustrated in
the figure below.

• If we enumerate the local dofs lexicographically on Ω̂ := [−1, 1]2 as
[u00 u10 u01 u11], then the bilinear interpolant takes the form,

u(r, s) =
1∑
j=0

1∑
i=0

li(r) lj(s)uij, (57)

with the linear 1D interpolants defined as,

l0(r) =
1− r

2
, l1(r) =

1 + r

2
. (58)

22

Enforcing Function Continuity in the FEM

• Before returning to the FEM derivation, we remark that the global basis
functions have n dofs, where typically n� Env.

• One of the major considerations when implementing the FEM is to en-
sure that functions are continuous, which puts constraints on the local
basis coefficients, uei .

• Function continuity is ensured if, for every (e, e′) (i, i′) pair where

xei = xe
′

i′ , (59)

we insist that

uei = ue
′

i′ . (60)

• This condition is typically enforced through matrix and vector assembly,
which we’ll discuss later.

• We note, however, that it derives from an element-to-vertex map that
comes with most FEM meshes.

• For each element, Ωe, we associate nv integers. These integers in turn
point to unique global vertices, xj.

• For the case of triangles, j = t(e, i), i = 1, . . . , 3, would point into an
array, x(j). Both arrays, x(:) and t(:, :) are provided by mesh generators.

• It will be convenient (in theory and practice) to define a matrix operation
that maps from the global index form of a scalar field, ū = [u1 u2 . . . un̄]

T

to its local counter part, uL := [u1
1 . . . u

1
nv
. . . uei . . . u

E
nv

]T .

• We’ll denote this map by a sparse Boolean matrix (comprising only 1s
and 0s), Q, such that

uL = Qū. (61)

23

• Note that this map includes the boundary dofs—we typically distinguish
between nodal values on ∂ΩD and those in Ω\∂ΩD only at the end of the
problem setup in order to support a variety of boundary conditions for
different fields.

24

• An illustration of the global-local representations of u(x) for linear 1D
elements with E = 3 is given in the accompanying figure.

u0

u1 u2

u3

x0 x1 x2 x3

u10

u11=u20 u21 u30=

u31

Ω1 Ω2 Ω3

• For this example, there are four inputs for u and six outputs for uL.

• The explicit form of the matrix vector product uL = Qu is

uL =

u1
0

u1
1

u2
0

u2
1

u3
0

u3
1

=

1

1

1

1

1

1

u0

u1

u2

u3

 = Qu. (62)

• Notice that the role of the columns of Q is to copy data from elements
of the global vector to their local counterparts.

• Conversely the corresponding role of QT is to sum local counterparts.

• Given the “t()” matrix introduced earlier, it is possible to construct the
matrix Q in matlab with the statement:

Q = sparse(1:nl,reshape(t’,nl,1),1);

• In matlab it is probably faster to evaluate uL = Qu than to execute a
for loop, which is what would be preferred in Fortran or C.

25

FEM Formulation: Galerkin/Variational Projection

• The FEM postulates solutions of the type (47), which is equivalent to
(48), modulo constraints to be defined, and seeks to find the vector of
basis coefficients u = [u1 u2 . . . un̄]

T such that

‖ũ − u‖∗ (63)

is minimized, where ũ(x) is the unknown exact solution to the PDE and
‖ · ‖∗ is an appropriate norm.

• To illustrate the ideas, we’ll start with the Poisson problem,

−∇2ũ = f in Ω, ũ = ub on ∂ΩD, ∇ũ · n̂ = 0 on ∂ΩN . (64)

• We’ll minimize the error in the a-norm,

a(v, u) :=

∫
Ω

∇v · ∇u dV (65)

‖u‖a :=

[∫
Ω

∇u · ∇u dV
] 1

2

=
√
a(u, u). (66)

• Assume that

u, ũ ∈ H1
b =

{
v | v = ub on ∂ΩD,

∫
Ω

∇v · ∇v dV < ∞,
∫

Ω

v2 dV < ∞
}
. (67)

• Let’s also introduce the space H1
0,

v ∈ H1
0 =

{
v | v = 0 on ∂ΩD,

∫
Ω

∇v · ∇v dV < ∞,
∫

Ω

v2 dV < ∞
}
, (68)

and H1,

v ∈ H1 =

{
v |
∫

Ω

∇v · ∇v dV < ∞,
∫

Ω

v2 dV < ∞
}
. (69)

26

• Note that the error e := ũ− u, is in H1
0 even though ũ and u are in H1

b .

• The defining property of u is that, out of all functions in XN
b ⊂ H1

b , it
minimizes the error.

• Specifically, let w ∈ XN
b and v := u− w ∈ XN

0 , then

‖e‖2
a = ‖ũ− u‖2

a ≤ ‖ũ− w‖2
a (70)

= ‖ũ− (u− v)‖2
a (71)

= ‖e+ v‖2
a (72)

= a(e, e) + 2a(v, e) + (v, v). (73)

• Clearly, we need a(v, e) = 0 if the inequality is to hold for any
possible choice of v ∈ XN

0 .

• Once again we have equivalence between minimization of ‖e‖a
and orthogonality of e to the search space, XN

0 , as illustrated
in the accompanying figure.

ũ0

e

u0

a
XN

0 OXXXXXXXXXXXXXXXXXXXX

��
�
��

�
��

�
��

�
��XXXXXXXXXXXXXXXXXXXX

��
�
��

�
��

�
��

�
��

�
�
�
�
�
�
�
�
�
�
�
�
��3

-

6

• From the orthogonality relationship we can derive an explicit formula for
u,

0 = a(v, e) = a(v, ũ− u) =⇒ a(v, u) = a(v, ũ) ∀ v ∈ XN
0 . (74)

• The statement on the right in (74) is our standard projection form.

• It says that we are seeking an n-dimensional object in an n-dimensional
space, XN

0 , and that we have n test conditions (e.g., take v = φi, i =
1, . . . , n).

27

• This n-dimensional object, u, will match the infinite-dimensional object,
ũ, under these n test conditions or any linear combination of them.

28

• To generate a computable solution, we modify both the right-
and left-hand sides of (74).

• Starting with the right, we integrate by parts as follows.

a(v, u) = a(v, ũ) =

∫
Ω

∇v · ∇ũ dV (75)

= −
∫

Ω

v∇2ũ dV +

∫
∂Ω

v∇ũ · n̂ dS (76)

=

∫
Ω

v f dV +

∫
∂ΩD

v∇ũ · n̂ dS +

∫
∂ΩN

v∇ũ · n̂ dS(77)

=

∫
Ω

v f dV (78)

• In (77), the surface integral on ∂ΩD vanishes because v vanishes there
(v ∈ XN

0).

• The surface integral on ∂ΩN vanishes because of the homogeneous
Neumann condition on ũ given in (64).

• The steps (75)–(78) allow us to eliminate the unknown ũ in exchange for
things we do know, namely, f(x) and the boundary conditions.

• The complete statement of the variational/Galerkin problem statement
is,

Find u ∈ XN
b ⊂ H1

b such that, for all v ∈ XN
0 ,

a(v, u) = (v, f) (79)

• The next steps will lead us to a linear system for the unknown basis
coefficients.

29

• Let

φ1, . . . , φn = 0 on ∂ΩD (80)

φn+1, . . . , φn̄ 6= 0 on ∂ΩD. (81)

Recall that since we are working with Lagrangian interpolants the above
classification amounts to enumerating grid points in the interior and on
the Neumann boundary, ∂ΩN , first and those on ∂ΩD last.

• In practice, this renumbering is not necessary and typically not done—
but
it simplifies the derivation below.

• At the risk of overloading the notation, we will define

ub(x) :=
n̄∑

j=n+1

ub(xj)φj(x) ∈ XN
b ⊂ H1

b . (82)

• Note that (82) is, in effect a lifting function that extends the known
trace (boundary) data, ub(x ∈ ∂ΩD) to a function defined in XN

b .

• We further define the decomposition,

u(x) = u0(x) + ub(x), (83)

which we insert into the bilinear form,

a(v, u) = a(v, u0) + a(v, ub). (84)

• We next use the global expansions to express the continuous functions
in terms of a set of discrete values.

u0(x) =
n∑
j=1

ujφj(x) (85)

ub(x) =
n̄∑

j=n+1

ujφj(x) (86)

v(x) =
n∑
i=1

viφi(x). (87)

30

• Note that the unknowns are u = [u1 u2 . . . un]
T , as the boundary

coefficients, uj, j > n are known.

31

• We now derive the system matrix.

• Consider the bilinear form,

a(v̄, u) = a

(
n̄∑
i=1

φi(x)v̄i,
n̄∑
j=1

φj(x)uj

)
(88)

=
n̄∑
i=1

n̄∑
j=1

v̄i a(φi, φj)uj (89)

=
n̄∑
i=1

n̄∑
j=1

v̄i āij uj = v̄T Ā u. (90)

• Here, we have defined the temporary function, v̄, which is allowed to be
nonzero on ∂ΩD.

• Likewise, the system matrix Ā has an index range that spans i, j ∈
{1, . . . , n̄}2.

• As it accounts for dofs on all of ∂Ω we refer to it as the Neumann oper-
ator.

• Ā is singular because Ā1 = 0. (The nullspace comprises the constant
vector.)

• We recover an invertible operator as follows.

• Recall that the solution we seek, u0, and the test functions, v, are in XN
0 .

• Let u0 ∈ lRn represent the unknowns in Ω\∂ΩD, and define a prolonga-
tion matrix, RT that extends u0 to have 0 values for all basis functions
associated with ∂ΩD. (In our case, that implies zeros in rows j > n.)

32

• We write this extended vector as

ū0 = RTu0. (91)

• With this definition, we can assert that

ū0(x) =
n̄∑
j=1

ū0,j φj(x) ∈ XN
0 . (92)

• Similarly, for any v ∈ lRn, v̄ = RTv represents a function in v ∈ XN
0 .

• Thus, our variational statement reads, Find u0 ∈ XN
0 ⊂ H1

0 such that,
for all v ∈ XN

0 ,

a(v, u0) = (v, f) − a(v, ub). (93)

• From our definitions, we have

a(v, u0) = v̄T Āū0 = (RTv)T Ā(RTu0) = vT (RĀRT)u0 = vTAu0,(94)

where A = RĀRT is our invertible (SPD) system matrix.

• Following through in a similar way for the terms on the right of (93)
leads
to the linear system

vTAu0 = vTR (B̄f̄ − Āub), (95)

which holds for all v ∈ lRn. Since A is invertible, this implies simply,

Au0 = R (B̄f̄ − Āub). (96)

• In the preceding equations, we have introduced the mass matrix,

B̄ij =

∫
Ω

φi φj dV. (97)

33

FEM: Element-Based Implementation

• We see that the FEM relies on integration.

• Fortunately, integration is relatively easy.

• Let’s ignore the boundary conditions for the moment and just consider
functions v and u in XN :=span{φ1 . . . φn̄}.

• We have, for all v, u ∈ XN ,

(v, u) =

∫
Ω

v u dV (98)

=
E∑
e=1

∫
Ωe

v u dV (99)

=
E∑
e=1

∫
Ω̂

(
nv∑
i=1

vei li(r)

)(
nv∑
j=1

uej lj(r)

)
J e(r)dr (100)

=
E∑
e=1

nv∑
i=1

nv∑
j=1

vej

(∫
Ω̂

li(r) lj(r)J e(r)dr

)
uei (101)

=
E∑
e=1

nv∑
i=1

nv∑
j=1

vejB
e
iju

e
i (102)

=
E∑
e=1

(ve)TBeue. (103)

• Here, Be
ij :=

∫
Ω̂ li(r) lj(r)J e(r)dr is the local mass matrix, and

ue is the local vector of unknown basis coefficients.

• Recall that uL = [u1 u2 . . . uE] is the vector containing vectors of local
basis coefficents,

ue =
[
ue1 u

e
2 . . . u

e
nv

]T
. (104)

34

• Since we require u(x) ∈ XN ⊂ H1 to be continuous, we recall from (61)
that a vector uL = Qū will have the correct continuity requirements.

• Therefore, with BL :=block-diagonal(Be), we have the following equiva-
lence, For any v, u ∈ XN ,

(v, u) = (Qv̄)TBL(Qū) = v̄TQTBLQū = v̄T B̄ū, (105)

where B̄ := QTBLQ is the assembled mass matrix.

• We likewise have the assembled stiffness (system) matrix,

Ā := QTALQ, (106)

with AL :=block-diagonal(Ae), and Ae
ij :=

∫
Ω̂

d∑
k=1

∂li
∂xk

∂lj
∂xk
J e(r)dr.

• Here, we have cheated slightly by using ∂li
∂xk

, by which we mean that one
must apply the chain rule to express the derivatives in (r, s) coordinates.

• Fortunately, for linear triangles, there are relatively simple expressions
(still about 30 lines in matlab) to generate Ae and Be, and these, coupled
with Q and R are all we need to set up the FEM system.

• Combining all of these tools together, our FEM system reads,

Au0 = R (B̄f̄ − Āub) (107)

u = RTu0 + ub, (108)

with

A = R(QTALQ)RT (109)

B̄ = QTBLQ. (110)

• Since Ā, B̄, and Q depend only on the mesh geometry and topology, it is
convenient to have a utility that computes those for any set of triangles.
Such code will be provided.

• Finally, we remark that all of this notation extends to the 3D case. One
only needs new utilities for computing (Ae, Be).

35

