Finite Element Method (FEM)

e With finite differences, we approximate the equation, e.g.,
d*a 5w
-0 = @) — ——5 = f;, +BCs
e With the FEM, we approximate the solution, e.g.,
n
’U,(.I') = Z{LJQS](SU)? X(])V = Span{¢17 SR an},
j=1

where the ¢;s satisfy homogeneous BCs (say).

e We try to make the error, e(x) := u(z) — u(x), small.



Collocation

e One way to try to make the error small is to force the residual to
be zero at certain collocation points, x;:

d>u .
r(x) = 75 flx) = 0 ata, i=1,...,n. (3)
d*u d*u
- - i 4
dx? + da? (4)
d’e
= T2 (5)

e Clearly, r(xz) = 0 if u(x) = u(z).
e The residual is computable and is the only available measure of the error.

e Implementation of the collocation scheme is
[ di(en) ga(zr) - dilen) | [ (1)
P(x2) Py(x2) -+ p(a2) i fo

() ) o ) | \an ) \ 1)

e Q: If you were going to implement collocation, what would be a good set
of points?



Weighted Residual Techniques

e For several reasons, its better to make the residual small in a weighted
sense, rather than just enforcing r(z) = 0 at a few isolated points.

e A disadvantage of collocation is that it requires ¢; € C*, i.e., twice dif-
ferentiable, which precludes piecewise-linear (FEM) basis functions. :(

e Another disadvantage is that it does not guarantee a best-fit approxima-
tion.

e Also, it does not yield a symmetric “stiffness” matrix (A := —D?).

e Moreover, Neumann and Robin BCs are not easy to implement
(many many papers on this very topic).

e For these reasons, the Weighted Residual Technique is strongly preferred.



Weighted Residual Method

e Here, rather than enforcing r(z) = 0 pointwise, we seek a solution
u(x) € X}V such that r(z) L Y¥ for a suitably chosen Y.

o We call X}¥ the trial space and Y{" the test space.

e Here, we define “1L” in the following sense:

Let (f.g) = /Q f(x) g(z) dz. (7)

Wesay f Lg if (f,g) = 0. (8)

e Q: Why would orthogonality imply a small residual 77



The WRT is essentially a method of undetermined coefficients.
e Consider the 1D Helmholtz equation with 5 > 0,
T2 + Bu = f(z), u(0) = a(l) = 0. (9)

e Seek an approximate solution u in a finite-dimensional trial space X\,

(= Xév = span{¢1(x), QSQ(LU)? T an(x)}? ij(o) - ¢J(1) = 0. (10)

(We use the subscript 0 on X{' to indicate that functions in this space
satisfy the homogeneous Dirichlet boundary conditions.)



e The trial solution is a linear combination of the basis functions ¢;(x)
with basis coefficients 0,

ule) = Do) (11)

e The orthogonality condition is based on the standard L? inner product.
Specifically, we require

0 = /01 v(z)r(x)de = /01 v(x) (f—l—% - 5u) dx Yv e Y)Y (12)

or,

1 d2 1
/0 v(x) <—d—;2b + 6u> dr = /0 v fdr YveYy. (13)

e Note that if Y =span{¢;(x)}, i =1,...,n and ¢;(z) = 6(z — 2;),
the Dirac delta function, then we recover collocation.

— That is, we are enforcing r(x;)=0.



Galerkin Method

e For the Poisson and Helmholtz equations, the optimal choice
is Y{¥ = X, which is the Galerkin method.

e It appears that u must be twice differentiable.
We can avoid this requirement through integration by parts.

e Let Z denote the left-hand side of the preceding equation.

7 = /01 (—v(:c)% + ﬂvu) d (15)

L (dv du 1
= — dr — vu' 1
/0 <d:pdﬂc + Bvu> r — v, (16)
L (dvdu
= _—— dzx. 1
/0 (da:dx + ﬁvu) x (17)

e The boundary terms vanish because v =0 at x = 0 and 1.

e We see that the number of derivatives on the trial (u) and
test (v) functions is now the same.

e They thus have the same (low) continuity requirements, which
is feasible because they are in the same space (Y = X{).



(1))

e We denote the integral Z as the energy (or “a”) inner-product,

1
a(v,u) = /0 (j—;j—z + Bvu) dx. (18)

e a(-,-) is symmetric, a(v,u) = a(u,v), and positive definite:
a(u,u) > 0Vu # 0. (19)

For 8 =0, a(u,u) = 0 only if u = constant, but the only constant in X2’
is u = 0.

e Our discrete problem can be stated as,
Find u € X' such that
a(v,u) = (v, f) Vo € X7, (20)
e Note that this statement is an identity for @ (generally @ ¢ X{¥):
a(v,a) = (v, f) (21)

which holds for all v for which the integrand is computable.

e Specifically, for the continuous problem, we refer to the formulation,
Find u € H} such that

a(v,i) = (v, f) Yv € H;, (22)

as the weak form, which means we are allowed to look for solutions that
are in a space that is larger than C[()].



e Set of spaces commonly used for analysis of PDEs are Sobolev spaces.

e The most important ones for our purpose:

£r = {v|/Q@2dx < oo} (23)

H' = {U|U€£2, /VU-VvdX < oo} (24)
Q

Hy = {v|ve H, v(X) g0, = 0} (25)

H, = {U| veH U(X)\aQD = Ub(x)} (26)

XY = {vjve Hy N span{oy ¢ . . - n}} (27)

(28)

e Note that H; is not closed.
Functions in this space cannot be represented as arbitrary linear combi-
nations of elements in this space. Usually, we pick one element from H;,
say up(x) and then seek our solution as u(x) = uy+ug(x), where ug € Hj.

e Associated with these spaces we have the following inner products and
induced norms

L (figh = fofadx, 17 = 17 9) (29)
W (hon = o VO Veds Nl = (Sl

N|—=



e Returning to our differential equation, we have, for f € £2,

(a) Find @ € H} such that a(v, @) = (v, f) Yo € H;,

(b) Find u € X C H} such that a(v,u) = (v, f) Vv € XJ.

e Nominally, (b) completes our discretization.

e Once the finite-dimensional subspace X' C Hj} is identified
there are no more choices.
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e Let’s summarize the results so far:

u(x) = Zuj¢j(x) c X
=0

n

v(x) = Zvi@(x) c X

1=0

e For cmyUEXéV,

a(v,u) = /QVU-VudV = (v, f) = /Qvde.

e Using the preceding expansions,

a(v,u) = ZZUZ

i=1 j=1

[ / V-V, dV] U;j
9)

n n
== E E viaijuj

i=1 j=1

= v’ Au,

where A = [a;;] and

Q
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e On the rhs, we have

n n

) = 3w [ b = Yub =T (40)

i=1 j=1 ij

e Combining these, we have, for all v € R",

v Au = v'b, (41)

or simply,
Au = b. (42
(43)

e Note that A is SPD.
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e There are of course many details...

e And, there is an issue that we generally cannot exactly integrate
the product of the data and the test functions, (v, f).

e We turn to some of those details momentarily, but first discuss
some optimality properties.
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e Because X' C H{}, we can derive the following error relationship
Find u € X}¥ C H} such that, for allv € X',

a(v,u) = a(v,a) (44)
a(v,u) — a(v,u) = 0 (45)
a(v,a—u) = 0. (46)

e Which implies that e := @ — u is a-orthogonal to X{: e(z) L, X{:

e Therefore, u(z) is the closest function in X" to @(x) in the || - ||, norm.

— For any function w satisfying the homogeneous Dirichlet
conditions, w(0) = w(1) = 0, we define the “a-norm”

|w]le = Val(w,w).
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Finite Element Methods

e Finite elements (FEM) offer significant advantages over finite differences
regarding complex geometry, general boundary conditions, and guaran-

teed SPD properties (when the PDE is “SPD”).

e A key idea of the weighted residual technique is to express the numerical
solution as a linear combination of basis functions, ¢,(x)

u(x) = > u;0;(0) (47)

and to then find the unknown basis coefficients, u;, such that u(x) ap-
proximately solves the PDE.

e In (47), n is the number of “global” basis functions, including ones that
are nonzero on the domain boundary, 0f).

15



e For the finite element method, these basis functions will

(i) have compact support (i.e., vanish almost everywhere), and

(7i) be expressed in terms of expansions on individual patches
(elements).

e These local expansions take the form

uX)]ge = > uSli(x), e=1,... E (48)
j=1

X|ge = ijlj(r), e=1,...,F, (49)
j=1

where n, is the number of vertices associated with each element and F
is the number of finite elements.

e Each element Q° is the image of € under the transformation (49).
e Here, it is understood that r € QO C R? d=1,2, or 3 being the number

of spatial dimensions for the PDE.

e In our applications, ¢;(x) and [;(r) are Lagrangian interpolants that sat-
isfy ¢;(x;) = d;; and l;(r;) = d;;, which implies that u(x;) = u; and
uf = u(x5).

e That is, the basis coefficients are also grid point values.

e This choice makes it easy to enforce boundary conditions and function
continuity.

16



Global /Local Finite Element Bases

e The FEM is predicated on a representation of u(x) for all x € )
that is generically of the form

u(x) = > 0,(x). (50)

e A characteristic of the finite element method is that the region of support
(i.e., the region where ¢; # 0) is compact or finite.

e That is, it is typically a small subset of (2.

e A single global basis function, ¢;(x) is illustrated in the accompanying
figure.

Figure 1: A global finite-element basis function, ¢;(x) in a complex domain. The basis function shown here
is piecewise linear on triangular elements.

e Note that ¢;(x) = 0 outside the basis of support, which we denote as
the region in the neighborhood of x;.
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e Specifically, we define each element, {2¢ as one of the triangular patches

0 unless x; € Q°. (Here,

seen in the figure and we have that ¢;(x)|q.

we allow ¢ to include its boundary.)

e This compact support feature leads to sparse operators because most

of the basis functions are mutually orthogonal.

(51)

that integrals of the type

., I/ containing both x; and x;, then

I
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(51)
are readily computed as the sum of integrals over each element,

e Note that another advantage of the FEM is

e If there is no element ¢, e =1, ..

(52)

/Q¢i¢jjedv

1

E

Gi¢;dV = >

e

J

e These local integrals are readily evaluated by working in a canonical

1

E

Gi gy dV = )

e

J

A

reference element, €2, which is defined as the unit square or unit triangle,

depending on the underlying local expansions.
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e As indicated in (52), integration on ¢ is effected by integrating over QO
and using an appropriate Jacobian, J°¢, associated with the map from )
to Q°.
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e To compute integrals (derivatives, etc.) on Q, we need local basis func-
tions.

e These are simply interpolation functions that allow one to accurately
interpolate grid point values onto any point in Q¢ (here, €2).

e For all of the FEM bases, the local representations are given by (48),
which is repeated here,

w(x)|ge = Zuglj(r), e=1,...,F (53)

where n, is the number of vertices in the reference element.

e For linear triangles, n, = 3. (Here, linear refers to the polynomial
order of the basis functions, [;(r, s), rather than whether the triangle
has straight or “curved” sides.)

e If we take 2 to be the right triangle with vertices (r,s) = (0,0), (0,1),
and (1,0), then the basis functions are

Li(r,s) = 1 —1—s (54)
lo(r,s) = r (55)
l3(r,s) = s, (56)

which are illustrated in the figure below.

Figure 2: Linear basis functions on the unit-triangle.
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Biquadratic and Bilinear Elements

e We can also have quadrilateral elements, such as bilinear, biquadratic,
or, in general, of order N, which can be arbitrarily high as is the case
for the spectral element method (SEM) [Patera, 84].

e The figure below shows the nine biquadratic basis functions for (7, s) in
the unit square, {2 := [—

—_
[

.

Y




e The bilinear counterparts to the biquadratic elements are illustrated in
the figure below.

e If we enumerate the local dofs lexicographically on Q := [—1,1]* as

[u0o w10 U1 u11], then the bilinear interpolant takes the form,

u(r,s) = Z

1 1
7=0 =0

Li(r) 1(s) uij, (57)
with the linear 1D interpolants defined as,
1—r 1+7r

Wir) = == h) = ——. (58)
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Enforcing Function Continuity in the FEM

e Before returning to the FEM derivation, we remark that the global basis
functions have n dofs, where typically n < En,.

e One of the major considerations when implementing the FEM is to en-
sure that functions are continuous, which puts constraints on the local
basis coefficients, us.

e Function continuity is ensured if, for every (e, €’) (i,4") pair where

1 (3

we insist that
ui = uj. (60)

7 ]

e This condition is typically enforced through matrix and vector assembly,
which we’ll discuss later.

e We note, however, that it derives from an element-to-vertex map that
comes with most FEM meshes.

e For each element, (2°, we associate n, integers. These integers in turn
point to unique global vertices, X;.

e For the case of triangles, j = t(e,7), ¢ = 1,...,3, would point into an
array, x(7). Both arrays, x(:) and t(:, :) are provided by mesh generators.

e It will be convenient (in theory and practice) to define a matrix operation

that maps from the global index form of a scalar field, & = [u; us ... uz]"
to its local counter part, uy = [uy ...u), ... uf...u) ]’

e We'll denote this map by a sparse Boolean matrix (comprising only 1s
and 0s), @, such that

Uy = Qu. (61)
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e Note that this map includes the boundary dofs—we typically distinguish
between nodal values on 0€)p and those in Q\92p only at the end of the
problem setup in order to support a variety of boundary conditions for
different fields.
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e An illustration of the global-local representations of u(z) for linear 1D
elements with £/ = 3 is given in the accompanying figure.

1 2 2
U1 U u=ug ui=u}
1 3
U us uo/ \Ll
Lo I T2 T3 oL 02 03

e For this example, there are four inputs for u and six outputs for u;.

e The explicit form of the matrix vector product u; = Qu is

AT A

Uy ;
0
2
Uy 1 Uq
Uy = = = Qu. 62
= R N I I )
us

e Notice that the role of the columns of @) is to copy data from elements
of the global vector to their local counterparts.

e Conversely the corresponding role of Q7 is to sum local counterparts.

e Given the “¢()” matrix introduced earlier, it is possible to construct the
matrix () in matlab with the statement:

Q = sparse(l:nl,reshape(t’,nl,1),1);

e In matlab it is probably faster to evaluate u; = Qu than to execute a
for loop, which is what would be preferred in Fortran or C.
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FEM Formulation: Galerkin/Variational Projection

e The FEM postulates solutions of the type (47), which is equivalent to
(48), modulo constraints to be defined, and seeks to find the vector of
basis coefficients u = [u; us ... uz|’ such that

& — ul, (63)

is minimized, where %(x) is the unknown exact solution to the PDE and
|| - ||, is an appropriate norm.

e To illustrate the ideas, we’ll start with the Poisson problem,

—V% = finQ, @ =uyondQp, Vi-n=0ondQy. (64)
e We'll minimize the error in the a-norm,

a(v,u) = /QVU-VudV (65)

lull, = [/QVU-VudVr _ Vau ). (66)
e Assume that
u, % € Hp = {v | v = up on 0Np, /QVU-VvdV < o0, /QUQdV < oo}
e Let’s also introduce the space H,
v € Hy = {fu\v:Oon(?QD, /QVU-VUCZV < oo, /QU2dV < oo},
and H!,

v 67—[1:{0\/VU-VvdV<oo, /deV<oo}. (69)
0 0
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e Note that the errore := @ —u, is in Hj even though @ and u are in H;.

e The defining property of u is that, out of all functions in X C H}, it
minimizes the error.

e Specifically, let w € lev and v :=u —w € X}, then
lellz = lla—wull; < [la—wl3
= |la—(u—0)];
= |le+vl

= a(e,e) + 2a(v,e) + (v,v).

e Clearly, we need a(v,e) = 0 if the inequality is to hold for any
possible choice of v € X{V.

e Once again we have equivalence between minimization of ||e||,
and orthogonality of e to the search space, X', as illustrated
in the accompanying figure.

e From the orthogonality relationship we can derive an explicit formula for
u?

0 = a(v,e) = a(v,i—u) = a(v,u) = a(v,a) Yve X7 (74)
e The statement on the right in (74) is our standard projection form.

e [t says that we are seeking an n-dimensional object in an n-dimensional
space, Xév, and that we have n test conditions (e.g., take v = ¢;, i =
L,...,n).
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e This n-dimensional object, u, will match the infinite-dimensional object,
1, under these n test conditions or any linear combination of them.
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e To generate a computable solution, we modify both the right-
and left-hand sides of (74).

e Starting with the right, we integrate by parts as follows.

a(v,u) = a(v,a) = /QVU-VdeV (75)

= —/W%jdv +/ vV - hdS (76)
Q o0

= /vde + / vVu-ndS + / vV - nd§77)
Q o0p N

_ /Qvde (78)

e In (77), the surface integral on 0€2p vanishes because v vanishes there
(v e XM).

e The surface integral on 02y vanishes because of the homogeneous
Neumann condition on @ given in (64).

e The steps (75)—(78) allow us to eliminate the unknown @ in exchange for
things we do know, namely, f(x) and the boundary conditions.

e The complete statement of the variational /Galerkin problem statement
is,

Find uw € X} C H} such that, for allv € X},

a(v,u) = (v, f) (79)

e The next steps will lead us to a linear system for the unknown basis
coefficients.
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o Let
¢1,---¢n = 0 on dp (80)
Pyt P # 0 on Ip. (81)

Recall that since we are working with Lagrangian interpolants the above
classification amounts to enumerating grid points in the interior and on
the Neumann boundary, 02y, first and those on 0€)p last.

e In practice, this renumbering is not necessary and typically not done—
but
it simplifies the derivation below.

e At the risk of overloading the notation, we will define
n

up(x) = Y w(x))e;(x) € XN C H,. (82)

j=n+1

e Note that (82) is, in effect a lifting function that extends the known
trace (boundary) data, uy(x € 9Qp) to a function defined in X;V.

e We further define the decomposition,
u(x) = u(x) + w(x), (83)
which we insert into the bilinear form,

a(v,u) = a(v,ug) + alv,up). (84)

e We next use the global expansions to express the continuous functions
in terms of a set of discrete values.

up(@) = ) ué;(x) (85)

up(z) = Z u;jd;(x) (86)

n

(@) = > vigi(x). (87)

1=1
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e Note that the unknowns are u = [uy usy ... un]T, as the boundary
coefficients, u;, 7 > n are known.
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e We now derive the system matrix.

e Consider the bilinear form,

a(v,u) = a (Z o;(x) 0, Zgbj(x)uj) (88)

1=1 j=1
= Y walénsyu, 9
=1 j=1
= ii@z dijuj = @TAQ (90)
=1 j=1

e Here, we have defined the temporary function, v, which is allowed to be
nonzero on 9€2p.

e Likewise, the system matrix A has an index range that spans i,j €

{1,...,a}%

e As it accounts for dofs on all of 02 we refer to it as the Neumann oper-
ator.

e A is singular because A1 = 0. (The nullspace comprises the constant
vector.)

e We recover an invertible operator as follows.
e Recall that the solution we seek, g, and the test functions, v, are in X¥.

e Let uy, € R" represent the unknowns in Q\0Qp, and define a prolonga-
tion matriz, RT that extends u, to have 0 values for all basis functions
associated with 0Q2p. (In our case, that implies zeros in rows j > n.)
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e We write this extended vector as
uy = R'uy, (91)

e With this definition, we can assert that
o(r) = > to;¢(x) € Xy (92)
j=1

e Similarly, for any v € R", © = RTwv represents a function in v € X}'.

e Thus, our variational statement reads, Find ug € X C H} such that,
for allv e X{V,

a(v,ug) = (v, f) — av,u). (93)
e From our definitions, we have

a(v,ug) = v Auy = (R'v)' A(R"uy) = v'(RAR )uy = v' Aug(94)

where A = RART is our invertible (SPD) system matrix.

e Following through in a similar way for the terms on the right of (93)
leads
to the linear system

v'Auy = v'R(Bf — Auy), (95)
which holds for all v € R". Since A is invertible, this implies simply,

Auy = R(Bf — Auw,). (96)

e In the preceding equations, we have introduced the mass matriz,

By = [ iosav (97)
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FEM: Element-Based Implementation

e We see that the FEM relies on integration.
e Fortunately, integration is relatively easy.

e Let’s ignore the boundary conditions for the moment and just consider
functions v and u in X~ :=span{¢; ... ¢n}.

e We have, for all v, u € X%,

(v,u) = /QvudV (98)

= i/evudv (99)

E Ty My
£ [ (eon) (o) o o

=535 9) ST RICTIER RIS Pt

e=1 =1 j=1
E - n,

BB a0
e=1 1=1 j=1
E

_ Z(ye)TBeﬂe. (103)
e=1

e Here, B, := [ Ui r) J¢(r)dr is the local mass matrix, and

u® 18 the local Vector of unknown basis coefficients.

e Recall that u; = [u! u? ... u”]

U is the vector containing vectors of local
basis coefficents,

u o= [uSug s ] (104)
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e Since we require u(z) € XV C H! to be continuous, we recall from (61)
that a vector u; = Qu will have the correct continuity requirements.

e Therefore, with B, :=block-diagonal(B¢), we have the following equiva-
lence, For any v, u € X%,

(v,u) = (Quv)'BL(Qu) = v'Q"BrQu = v' Ba, (105)

where B := QT B;Q is the assembled mass matrix.

e We likewise have the assembled stiffness (system) matrix,
A:=QTALQ, (106)

LR
&vk 8£Ck

with Az :=block-diagonal(A°), and Af; := / J€(r)dr.
0

k=1

e Here, we have cheated slightly by using a

must apply the chain rule to express the derlvatlves in (r, s) coordinates.

e Fortunately, for linear triangles, there are relatively simple expressions
(still about 30 lines in matlab) to generate A° and B¢, and these, coupled
with () and R are all we need to set up the FEM system.

e Combining all of these tools together, our FEM system reads,

Aug = R(Bf — Auw) (107)
u = Rluy + w, (108)
with
A = RQ"ALQ)R" (109)
B = Q'B;Q. (110)

e Since A, B, and Q depend only on the mesh geometry and topology, it is
convenient to have a utility that computes those for any set of triangles.
Such code will be provided.

e Finally, we remark that all of this notation extends to the 3D case. One
only needs new utilities for computing (A€, B¢).

35



