
1 HPC Architecture: Vector/SIMD Parallelism

Computer architectures such as the CPUs in your laptop have evolved to accelerate commonly occuring
operations in science and engineering. Among these, the multistage, fused multiply-add (fma) operation is
one of the most important for linear algebra and STEM applications in general. A classic operation is the
AXPY operation from the Basic Linear Algebra Subroutines (BLAS-1) set. If x and y are vectors of length n,
the AXPY operation reads,

y = a x + y, (1)

or, in a loop:

for i=1:n

y(i) = a*x(i) + y(i)

end

We see that, for each value of i, there is one multiply and one add. It turns out that for the majority of
linear algebra operations, the number of additions is roughly equal to the number of additions, so having
hardware support for such an operation can offer significant performance benefits. (A notable exception is
the fast Fourier transform, or FFT, for which there are asymptotically two additions for each multiplication.)

Execution of multiplication (and/or addition) requires the CPU to take several steps, including fetching
the data from memory, evaluating the product, and writing the result. In the product evaluation, there
are several steps required between loading of the operands (say, ai and bi) into registers and generation of
the product (say, ci := ai ∗ bi), with each step requiring a single clock cycle. If your CPU is running at
2 GHz and if it takes 4 cycles to execute the product, then your expected rate of multiplication would be
one result every 2 nanoseconds, or 500 million results per second. Since, in this case, each result requires
a single floating point operation (flop), we say that the processing rate is 500 MFLOPS–500 megaFLOPS,
where FLOPS := floating point operations per second.

For many vector operations, it is possible to pipeline the operands and have multiple calculations in
flight at one time, such that one result is produced per clock cycle, i.e., 2 GFLOPS (gigaFLOPS) in the
preceding example. Here is a cartoon of how that would work for a 4-stage pipeline. We see that if operands
a1 and b1 enter on cycle 1, the result emerges on cycle 5. In the interim, (a2, b2), (a3, b3), and (a4, b4), have
entered the pipelined operator on successive respective cycles 2, 3, and 4. As result c1 is written, operands
(a5, b5) are entering—all assuming that the memory subsystem is able to deliver the data at the required
rate, which will be the case if the operands are in the level 1 (L1) cache.

Pipelining also assumes that the operands are “ready”, which means that they are not dependent on
data that is still in the pipeline from a preceding operation. If the data is not ready for this reason it is
referred to as a vector dependency, which can slow down the computation and which should be avoided, if
possible.

Availability of an FMA implies that AXPY operations can be executed in about the same time as an
isolated multiply or add, which effectively doubles the number of floating point operations per second. Many
architectures support multiple FMA units, so that several FMAs may be executed in parallel.

2 Performance Testing

The concepts of pipelined and parallel architectures, vector dependencies, and data caching are important
considerations in designing algorithms and deciding which algorithm might be best for a given application.
In the following sections we explore the consequences of these features through a sequence of small tests
that will reveal how the architecture can influence performance, by as much as an order-of-magnitude, in
several cases.
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3 Tester Background

This section contains a suite of small test loops to analyze the influence of various operations/optimizations
on single-core performance. These loops are written in f77 but one could also perform a similar analysis for
loops written in C and (perhaps) python.

We start with the following basic loop in cmult1.f (multiplication of a vector by a constant, loop unroll
depth=1):

c-----------------------------------------------------------------------

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=1 ! # flops per entry

reg = 0.9999999999

do i=1,n

x(i)=reg*x(i)

enddo

return

end

c-----------------------------------------------------------------------

The test has the following characteristics.

1. kflop is an output. It indicates the number of floating point operations (flops) per entry in the vector.
Here, only a single flop (“*”) is performed for each entry, i=1:n: x(i)=reg*x(i), so kflop=1.

2. n is the length of the loop (or vector operation).

Note that the array x(:) is stored in a common block. This is by design because it tells the compiler that the
data is properly byte-aligned and that x(1) is the first entry in a cache line, which allows the compiler to do
a better job of optimizing memory management. Our goal with this exercise is to understand the influence
of the contents of the loop while, to the extent possible, minimizing confounding factors such as where the
data is coming from, etc. In fact, the experiment also reveals the influence of cached versus noncached data.
The variable reg is a constant that will be loaded and stored in a register for the duration of the loop. Thus,
this loop simply fetches a segment of the array x() (entries 1 to n), multiplies each entry by a constant, and
writes it back.
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To measure the time it takes to execute the loop and arrive at a floating point performance indicator,
MFLOPS (Millions of flops per second), we execute in base.f the following loop segment:

call rone(x,n) ! Initialize

call time_test(kflop,n) ! Warm-up

call cpu_time(start) !

do iloop=1,nloop ! MAIN

call time_test(kflop,n) ! TIMING

enddo ! LOOP

call cpu_time(finish) !

time = (finish-start)

flops = (kflop*n*nloop)/time ! floating point operations per second

The routine rone simply sets x(1:n)=1. Subroutine cpu time() captures the time before and after the start
of the routine such that the elapsed time is the difference between these. Note that CPU timers often have
limited resolution—a short test might execute completely before the timer is advanced. The run time would
appear to take zero seconds and thus make the apparent MFLOPs infinite. To avoid this possibility, we
execute the timer test nloop times, where nloop is large for small values of n but smaller for large values of
n. A simple approach is to take nloop = 20 + 2500000/n.

A consequence of executing the same code several times in a row is that the data in x(1:n) will be
cached on the first call to the timing test and will remain so unless n is so large that it will not all fit. In
principle, this test thus allows us to measure the cache sizes because we will see a fall-off in performance
when n becomes too large. Because we can measure the performance difference, we can also understand
what are the costs of bring data from main memory to (say) L2 cache and from L2 to L1.

To round out the test, we have a loop that uses larger and larger values of n, starting with n=1. For each
n, we initialize x(1:n) and then run the test routine outside of the timing loop to be sure that everything
is cached (when possible) before commencing the timing.

Finally, we remark that the routine time test is compiled from a different file than the driver routine
that calls it. This approach inhibits in-lining of these simple timer kernels and prevents over-optimization
by the compiler. An in-lined version of cmult1 would look, for example, like

do k=1,nloop

do i=1,n

x(i)=reg*x(i)

enddo

enddo

which a decent optimizing compiler might transform to

do i=1,n

do k=1,nloop

x(i)=reg*x(i)

enddo

enddo

This transformation increases the floating point intensity (number of flops per byte of memory transferred
to cache) by a factor of nloop. Ways to inhibit this artificial inflation include slightly changing the original
loop structure, e.g.,
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do k=1,nloop

do i=1,n

x(i)=reg*x(i)

enddo

x(n)=1.1*x(n)

enddo

The update x(n)=1.1*x(n) inhibits use of the transformation above. Alternatively, we can compile time test

in isolation, as done here, which prevents the optimizer from exploiting the artificially-simple context in which
it is being used for these timing tests.

We make two further remarks about the compilation process. First, we compile everything with type-
promotion, which promotes the fortran declared real variables and constants to real*8 (i.e., 64-bit floating-
point arithmetic or about 16 significant digits). So called FP64 is the standard for large-scale scientific
computing. Timings done in FP64 thus provide a more accurate measure of performance than if they were
done in lower precision. Second, we consider both optimized (-O3) and nonoptimized (-O0) compilation.
Unfortunately, if one compiles (at least with gfortran on a MacBook Pro) without specifying the level of
optimization, it defaults to -O0, which produces code that runs about 10× slower than the optimized code.
In the next section, we will look at timing data for these two cases and compare other kernels against this
baseline data.

Here is the makefile used for the tests:

CC = gcc

F77 = gfortran

FLAGS = -O3 -fdefault-real-8

NOBJS = base.o test.o

all: base print

base: $(NOBJS)

$(F77) -o base $(NOBJS)

print:

size base

clean:

’rm’ *.o

’rm’ base

test.o : test.f ; $(F77) -c $(FLAGS) test.f

base.o : base.f ; $(F77) -c $(FLAGS) base.f

4 Individual Tests

In this section, we present the results for several timing tests. We start with the cmult1.f example
and then include these results as baseline comparisons for other kernels. My MacBook Pro peaks
out around 48 GFLOPS when all four cores are running with boosted clock rates when factoring
large matrices (which has O(n) computational intensity). For a single core, the highest FP64 rate
that I’ve observed is around 10+ GFLOPS.
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4.1 cmult

Here, we consider the performance for the cmult loop given in the preceding section. The unop-
timized code (cmult1.0) realizes about 400 MFLOPS, while the optimized code peaks around 5
GFLOPS for n ∼ 256–4096. For smaller problems the FLOPS is low because the subroutine call
overhead is relatively large. For n > 4096, performance falls off because the vector no longer fits in
the 32KB L1 cache.. There is a similar performance drop-off around 32,768 words, corresponding
to the 256 KB L2 cache. There is a 2× performance difference between vectors of length 256–4096
and those in the ≈100,000 range. For n > 500K, performance again starts to degrade. The L3
cache is 2MB per core.

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=1 ! # flops per entry

reg = 0.9999999999

do i=1,n

x(i)=reg*x(i) ! cmult

enddo

return

end

Figure 1: Code and performance results for cmult baseline case: cmult.0 = -O0, cmult.3 = -O3.
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4.2 cadd

We next consider x = x + c using −O3. Here the performance is essentially the same as that
observed for cmult, as would be expected. CPUs support fused-multiply-add (FMA) units that
are designed to deliver one result per clock when executing pipelined arithmetic without stalls or
cache misses. In this case we are simply using the adder rather than the multiplier.

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=1 ! # flops per entry

reg = 0.9999999999

do i=1,n

x(i)=reg+x(i) ! cadd

enddo

return

end

Figure 2: Code and performance results for cadd, shown with baseline cmult results.
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4.3 fma

Here, we exercise the full capabilities of the FMA by executing a loop that has both an add and
a multiply. In this case, the performance is ultimately limited by the data transfer rates from the
caches or main memory but, for each memory reference, two operations are executed, which doubles
the computational intensity and FLOPS.

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=2 ! # flops per entry

r1 = 0.9999999999

r2 = 1.e-9

do i=1,n

x(i)=r1*x(i)+r2 ! fma

enddo

return

end

Figure 3: Code and performance results for fma, shown with baseline cmult results.
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4.4 div

The next figure shows the FLOPS rate for division, which does not have single-clock hardware
support. Division is typically performed with Newton iteration starting with an initial guess that
is generated either from a look-up table or through a sign change in the exponent.

We see that cdiv with -O3 sustains about 600 MFLOPS whereas the -O0 version is under 280
MFLOPS. Neither show evidence of cache effects because the memory subsystem is able to keep
up with this relatively slow operation.

The bottom line is that division is 4–6× slower than multiplication and thus should be avoided,
where possible. (For example, take division-by-constant outside of the loop and use multiply-by-
inverse instead.)

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=2 ! # flops per entry

r1 = 0.9999999999

r2 = 1.e-9

do i=1,n

x(i)=r1/x(i) ! div

enddo

return

end

Figure 4: Code and performance results for div, shown with baseline cmult results.

8



4.5 vlsum

Here, we consider a vector reduction, which is an operation that takes a vector input but produces
a scalar output. As written, the loop vlsum1

! vlsum1 | ! vlsum4

s=0 | sum0=0

do i=1,n | sum1=0

s = s + x(i) ! vlsum1 | sum2=0

enddo | sum3=0

x(n)=s | do i=1,n,4

| sum0=sum0+x(i ) ! vlsum4

| sum1=sum1+x(i+1)

| sum2=sum2+x(i+2)

| sum3=sum3+x(i+3)

| enddo

| x(1)=sum0+sum1+sum2+sum3

requires the result of the sum s from iteration i-1 before it can start the addition. This vector
dependency (result not ready) prevents pipelined execution of this operation.1

In vlsum4, we unroll the summation loop such that it has four independent computations in
the pipeline at one time. It is clear that sum3 does not depend on sum0, sum1, or sum2 and thus
can start as soon as the previous execution of sum3=sum3+x(i+3) has completed.2 We see that the
unrolled version sustains roughly the same FLOPS as the baseline cmult1-O3, whereas the naive
version vlsum1 version is about 3× slower.

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=1 ! # flops per entry

sum = 0.

do i=1,n

sum=sum+x(i) ! vlsum1.f

enddo

x(1)=sum

return

end

Figure 5: Code and performance results for vector reductions shown with baseline cmult results.

1The x(n)=s statement in the loop above is designed to prevent the compiler from recognizing that s has no use.
In such cases, compilers typically remove the loop altogether (dead code removal), resulting in the appearance of
spuriously high MFLOPS.

2In practice, one has to consider the case where n is not a multiple of 4 by using cleanup code at the end. We don’t
do that here as we are interested only in the influence on timing.
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4.6 Vector Dependencies

Here we consider two similar-looking loop structures

do i=2,n+1

x(i)=x(i+1)+reg

enddo

do i=1,n

x(i)=x(i-1)+reg

enddo

Notice that the first loop requires x(i+1) in order to start the ith step, while the second requires
x(i-1). In the first loop, the dependency is known, while in the second loop x(i-1) is still
in the pipeline at the point where we would normally initiate computation of x(i). Thus, the
second loop cannot take advantage of pipelined arithmetic (i.e., vectorization) without significant
mathematical reformulation. The first loop operates at about 60% of the baseline performance,
whereas the dependent loop is about 3× slower.

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=1 ! # flops per entry

do i=2,n+1

x(i)=x(i+1)+reg ! OK dependency

enddo

c do i=1,n

c x(i)=x(i-1)+reg ! Bad dependency

c enddo

return

end

Figure 6: Code and performance results for dependency tests. shown with baseline cmult results.
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4.7 Branching/Loop-Clutter

Here we consider a loop that has a branch (i.e., an if statment).

do i=1,n

if (x(i).lt.3) x(i) = r1*x(i)

enddo

Conditionals such as if statements inhibit vectorization because the computer cannot simply stream
the content of x into the registers. Only selected elements go in and then only subsequent to
inspection, required for the if test. Frequently compilers will assume that the test will be true and
will stream that result but halt and reverse the action if it turns out to be false.

We see that cluttering the loop with an if statement results in a 2–3× slow down compared
to the baseline.

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(nmax)

kflop=1 ! # flops per entry

r1 = 0.9999999999999

do i=1,n

if (x(i).gt.3) x(i) = r1*x(i) ! if_no.f

c if (x(i).lt.3) x(i) = r1*x(i) ! if_yes.f

enddo

return

end

Figure 7: Code and performance results for if tests. shown with baseline cmult results.
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4.8 Unit Stride Addressing

One of the fundamental concerns in HPC is to ensure that the memory system can feed data to
the CPU fast enough to keep the CPU busy.

subroutine time_test(kflop,n)

parameter (nmax=20 000 000)

common /mydata/ x(10,nmax)

kflop=1 ! # flops per entry

reg = 1.e-9

do i=1,n

x(1,i)=x(1,i)+reg ! Non-unit-stride

c x(i,1)=x(i,1)+reg ! Unit-stride

enddo

return

end

Figure 8: Code and performance results for unit-stride tests. shown with baseline cmult results.

12



4.9 Jacobi, Gauss-Seidel, Red-Black Gauss-Seidel

It is often argued that GS is easier than Jacobi because you can simply overwrite the results.
However, standard GS has a vector dependency that inhibits vectorization and parallelization.
One alternative (which also turns out to be good for multigrid) is red-black Gauss-Seidel.

subroutine jacobi_update(x,y,f,n)

real x(n,n),y(n,n),f(n,n)

call copy(y,x,n*n)

do j=2,n-1

jm=j-1

jp=j+1

do i=2,n-1

im=i-1

ip=i+1

x(i,j) = .25*(f(i,j)-y(im,j)-y(ip,j)-y(i,jm)-y(i,jp))

enddo

enddo

return

end

c------------------------------------------------------------------

subroutine gs_update(x,f,n)

real x(n,n),f(n,n)

do j=2,n-1

jm=j-1

jp=j+1

do i=2,n-1

x(i,j) = .25*(f(i,j)-x(i-1,j)-x(i+1,j)-x(i,jm)-x(i,jp))

enddo

enddo

return

end

c------------------------------------------------------------------

subroutine rbgs_update(x,f,n)

real x(n,n),f(n,n)

do j=2,n-1

jm=j-1

jp=j+1

do i=2,n-1,2

x(i,j) = .25*(f(i,j)-x(i-1,j)-x(i+1,j)-x(i,jm)-x(i,jp))

enddo

do i=3,n-2,2

x(i,j) = .25*(f(i,j)-x(i-1,j)-x(i+1,j)-x(i,jm)-x(i,jp))

enddo

enddo

return

end

c------------------------------------------------------------------

Figure 9: Code and performance results for JAC/GS/RBGS tests. shown with baseline cmult

results.
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4.10 BLAS1, BLAS2, and BLAS3

The Basic Linear Algebra Subroutines (BLAS) were developed to be codified fundamental elements
of linear solvers (system solves, eigenvalue solves, etc.) that could be optimized by vendors of high-
performance computers, with an original focus on vector machines of late 1970s.

• The BLAS libraries are categorized as follows:

– BLAS1: vector-vector, e.g., daxpy: y = ax + y.

– BLAS2: matrix-vector, e.g., dgemv: y = Ax + y.

– BLAS3: matrix-matrix, e.g., dgemm: C = AB + C.

• What is the computational intensity for each of these routines?

• The original version of LinPACK was based on vector operations, i.e., BLAS1.

• In the mid- to late-80s, LinPACK was replaced by LaPACK, which was BLAS3-based
and over an order-of-magnitude faster.
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