
CS556 Iterative Methods Homework 1 Solution.

(1a) For the 1D finite difference problem on [0, L] = [0, 1] with uniform grid-spacing ∆x = 1/(n+1),
the governing system matrix is

A =
1

∆x2
tridiag(−1, 2,−1). (1)

Since A is SPD, the largest eigenvalue satisfies

λmax ≥ max
z∈lRn

zTAz

zT z
. (2)

Take z = ej , the jth column of I, the n × n identity matrix. Then zTAz = ajj = 2/∆x2 =

2(n+ 1)2 ∼ 2n2, so,

λmax(A) ≥ 2

∆x2
∼ 2n2 = O(n2). (3)

This lower bound is within a factor of two of the actual asymptotic value, λmax(A) ∼ 4/∆x2,
but it is a reasonable first cut at an approximation. As we will see below, it works well for
the nonuniform mesh case where a closed-form approximation is not readily accessible.

For every useful discretization of the continuous problem, we have

λmin(A) ∼ π2. (4)

Therefore, the condition number of A satisfies

κ(A) =
λmax

λmin
=

O(n2)

π2
= O(n2). (5)

(1b) For the same problem with nonuniform spacing, the mininum eigenvalue relationship (4)
holds, so λmin ∼ π2. To get the maximum eigenvalue, look at the jth equation:

−d
2u

dx2

∣∣∣∣
xj

≈ − 1

∆x

[
uj+1 − uj

∆xj+1
− uj − uj−1

∆xj

]
=

1

∆xj∆xj+1
(αuj−1 + βuj + γuj+1) , (6)

with

α = −∆xj+1

∆x
, β = 2, γ = −∆xj

∆x
. (7)

Therefore, the diagonal entry is

ajj =
2

∆xj∆xj+1
= O(∆x−2j ), (8)

where the last equality holds by virtue of the assumption that the variation between ∆xj and
∆xj+1 is bounded by a constant. (For the Chebyshev point distribution that ratio turns out
to be ≈ 3, rather than 2 as hinted at in the assignment.) From Part (1a), we have that

λmax(A) ≥ max
j
|ajj | = O(∆x−2min). (9)

Therefore, the condition number of A satisfies

κ(A) =
λmax

λmin
=

O(∆x−2min)

π2
= O(∆x−2min). (10)
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(1c) Use Gershgorin to localize the eigenvalues of D−1A for both the uniform and
nonuniform cases.

• Uniform Case. Here, D−1 = h2

2 I, so D−1A =tridiag(− 1
2 , 1 − 1

2 ). Consequently, all
Gershgorin discs are centered at (1,0) in the complex λ-plane. On every row, save for
the first and last, the disc radius is

ρi =
∑
j 6=i

|αij | =
1

2
+

1

2
= 1, (11)

where αij are taken to be the entries of D−1A. The discs associated with the first and
last rows of the matrix have radius 1

2 , which implies that they lie within the union of the
remaining discs and therefore do not enlarge potential domain of the eigenvalues. Thus,
the eigenvalues of D−1A are in the disc of radius 1 centered at (0,1) in the complex
plane. Given that D−1A is also real symmetric, then the eigenvalues are real and we
can assert that λ ∈ [0, 2]

• Nonuniform Case. From (6)–(7) we see that D−1A for the nonuniform case leads to[
D−1A

]
j

= tridiag(
α

β
, 1,

γ

β
). (12)

By construction, the Gershgorin discs are all centered at (1,0). For the interior points,
the radii are

ρj =

∣∣∣∣αβ
∣∣∣∣ +

∣∣∣∣γβ
∣∣∣∣ + =

1

2∆x
(|∆xj+1| + |∆xj |) = 1. (13)

As in the case of the uniform points, the discs associated with the end points are centered
at (1,0) and within the unit discs of the remaining rows.

The preceding analysis shows that diagonal scaling successfully localizes the eigenval-
ues for both the uniform and nonuniform grid spacing cases.

Unfortunately, this is a necessary condition but in this case not sufficient to prove con-
vergence because the largest Gershgorin disc touches both endpoints of the interval
[0,2], which means that the spectral radius of E = I − D−1A could be as large as 1,
rather than strictly < 1. This case is unlike the Helmholtz problem considered in class,
H = I + γ2A, where Gershgorin would immediately localize the discs of E to have radii
< 1, independent of n.
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Figure 1: Chebyshev points on [-1,1].

(1d) Figure 1 shows the Chebyshev points, zj = cos(θj) for uniformly-distributed angles θ0, . . . , θn+1

on [−π, π]. (Our points are translated and scaled to [0, 1], xj = 1
2 (1 + zj).) Here, we discuss

the relative spacings, per the HW1 questions.

• As illustrated in Fig. 1, the maximum spacing ∆zj ∼ π
n+1 , which corresponds to the

arclength of each segment. As ∆θj −→ 0 the distance between the center points tends
towards this arclength. Similarly, max ∆xj ∼ π

2(n+1) .

• From Fig. 1 scales as

∆zmin ∼ 1− cos π

n+ 1
∼ θ2

2
, (14)

where θ := π/(n+ 1). Consequently, ∆xmin ∼ θ2/4.

• The maximum ratio occurs near the ends of the domain. After the first point, the
second grid point is located at x2 ∼ (2θ)2/4, so that the second space is of size ∼
3θ2/4 ∼ 3∆xmin. Thus, the slowly varying condition holds (adjacent spacings vary by
at most a factor of 3).

In fact, a closer inspection reveals that

ajj =
2

∆xj∆xj+1
. (15)

Since the size ratio for the smallest Chebyshev points is 3, we can anticipate that
maxj ajj ∼ 2/(3∆x2min), which is plotted in Fig. 2, along with the actual eigenval-
ues.

Summary. The maximum eigenvalue and condition number of A for the uniform case scale
like O(n2) while those for the Chebyshev case scale like O(n4), which is much more severe.
Diagonal scaling, however, brings all the eigenvalues into the unit disc for both cases and
yields a condition number that scales as O(n2), as illustrated in Fig. 1.
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Figure 2: Computed (symbols) and modeled (lines) eigenvalues for Poisson operator on
Chebyshev points: green=λmax, blue=λmin ∼ π2. Also shown is the condition number for
Acheb, which scales as O(n4), and for D−1Acheb, which scales as O(n2).

2. With each power of the tridiagonal matrix A the number of diagonals increases by 2. So we
start with ∼ 3n nonzeros, then ∼ 5n for k = 2, and so forth. Neglecting end effects (i.e., for
k � n) the number of nonzeros for Ak is ∼ n(1 + 2k).

3. Consider a vector e that is zero everywhere except for entries ej , j = j0 : j1. The matrix-vector
product w = Ae will be a linear combination of columns aj0 : aj1 of A, which will have
nonzeros in locations j = j′0 : j′1, where j′0 = max(1, j0 − 1) and j′1 = min(n, j1 + 1). Thus,
if we start with e = ej , the jth column of the identity matrix, the number of nonzeros will
grows by 1 on either side of j for each matrix-vector product. If j = n/2 (assuming n even),
then it will take k = n/2 matrix-vector products to produce a nonzero in every location of
Akej .

4. Figure 3 shows the columns of Z := A−1. We see that all the entries are strictly positive and
that A−1 is consequently completely full.

If we were to solve Au = f problem in parallel, with f a distributed data vector and u a dis-
tributed solution vector then we would need an all-to-all communication because each nonzero
in f has a nontrivial influence on every value of u. This assertion is a direct consequence of

the fact that every column vector of A−1 is completely full.
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Figure 3: Columns of A−1 for n=20, where A is the 1D Poisson operator on a uniform grid.
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