
CS556 Iterative Methods Homework 2.

1a. Consider Au = f , where A is the n×n SPD matrix derived from the 2nd-order centered differ-

ence approximation to −∇2u = f with homogeneous Dirichlet conditions on the d-dimensional
unit cube, Ω = [0, 1]d. Assume a uniform spacing h = 1/(m + 1) in each direction (implying
n = md).

Suppose we use Jacobi iteration to solve this system, starting with u0 = 0,

uk = uk−1 + D−1(b − Auk−1),

where D =diag(aii) is the diagonal of A. The error propagator for this system is
E = (I −D−1A) and it has a spectral radius of the form

ρ(E) = 1 − ε,

with ε ∼ Cnk. Find C and k in this expression for d = 1, 2, and 3.∗

ANS. For this problem, D = δI with

δ =
2d

∆x2
= 2dN2,

where ∆x = 1/N and the number of unknowns n = (N − 1)d ∼ Nd.

For d = 3, the eigenvalues of A are

λijk = λi + λj + λk,

with a similar expression in 2D. Here, the λi are the eigenvalues of the 1D problem,

λi =
2

∆x2
[1 − cos(π∆xi)],

Thus, in d space dimensions the extreme eigenvalues of A are

λmin =
2d

∆x2
[1 − cos(π∆x)]

λmax =
2d

∆x2
[1 − cos(π(N − 1)∆x)].

For Jacobi iteration, the error propagation matrix E = I −D−1A has eigenvalues µ = 1− δλ.
Given the eigenvalues of A above, we have that µmax = −µmin, so ρ(E) = µmax,

ρ(E) = 1 − ∆x2

2d

2d

∆x2
[1− cos(π∆x)] = cos(π∆x)]

∼ 1 − (π∆x)2

2
= 1 − π2

2
N−2 ∼ 1 − π2

2
n−

2
d .

Consequently, C = π2/2 and k = − 2
d , d=1, 2, and 3.

∗Recall that ε ∼ Cnk implies that lim
n−→∞

ε = Cnk.

1



1b. Use the results

[ρ(E)]k ∼ (1− ε)k ∼ (e−ε)k ≈ 10−
εk
2

to derive an expression for the anticipated number of iterations for the relative error,
‖ek‖/‖u‖ ≤ 10−6 for each case, d = 1, 2, and 3. (For purposes of this assignment, you can
assume that the majority of the energy in the solution is in the most slowly decaying mode.
See (16) in tridiag example.pdf on the Relate page.)

ANS. Since ek = Eke0 = Eku, we have

‖ek‖
‖u‖

≤ [ρ(E)]k ≈ 10−
εk
2 ≈ 10−6. (1)

Equating the exponents on the right of the preceding expression leads to

k ≈ 12

ε
(2)

≈ 24

π2
n

2
d (3)

≈ 2.4n2 d = 1 (4)

≈ 2.4n, d = 2 (5)

≈ 2.4n
2
3 , d = 3. (6)

Note that the total work in each case is approximately 4dn ops per iteration, which gives the
following work complexity estimates:

d = 1 W ∼ 10n3

d = 2 W ∼ 20n2

d = 3 W ∼ 30n
5
3

Clearly, for a given number of unknowns, n, Jacobi iteration is highly unattractive for 1D
problems, but must more feasible in higher space dimensions. This trend constrasts sharply
with direct solvers for lexicographically-ordered systems of this form. In that case, the factor
cost scales as ∼ 2nb2 and the solve cost (backward and forward substitution) as ∼ 4nb, for

matrix bandwidth b = md−1 ∼ n d−1
d . The corresponding complexities for the factor phase are

tabulated below.

d = 1 WF ≈ 4n

d = 2 WF ∼ 2n2

d = 3 WF ∼ 2n
7
3

We see that for 3D, even our simple Jacobi iteration has a better complexity (albeit with a
relatively large constant) than its direct-solve counterpart. On the other hand, things are
relatively balanced for 2D, save that the constant for the direct solve is better (likely much
better, considering that it is implemented in BLAS3, which attains 1-2 orders of magnitude
performance boost over BLAS2 on modern CPUs).

2



2. Using material we’ve covered in class to date, complete the table below for the class of prob-
lems described in 1. Where possible, give the asymptotic constant or a close approximation,
rather than just O(nγ) for some particular γ. Use a relative error bound of ≈ 10−6 when
considering iterative methods.

Computational Complexities

Method 1D flops 1D storage 2D flops 2D storage 3D flops 3D storage

Banded Solver 8n 4n (LU) 2n2 2n
3
2 2n

7
3 2n

5
3

Nested Diss. 8n 4n 19.07n
3
2

31
8 n log2 n O(n2) O(n

4
3 )

Fast Diag. Meth. 4n2 n2 8n
3
2 2n 12n

4
3 n

FFT-based FDM O(n log n) 3n O(n log n) n O(n log n) n

Jacobi Iteration 10n3 5n 20n2 7n 30n
5
3 9n

Remarks concerning the table: The nested dissection complexities came from
the source material referenced in the short set of notes on the topic that are posted
on Relate. For the FDM, I did not count the preprocessing costs of solving the
eigenproblems. For our particular case, we have a closed-form expression for S = Sx,
etc., given by Sik = C sinπik/(m+ 1) where C =

√
2/(m+ 1).

3. For each of the cases below, plot the requested data as symbols, not lines. Then, plot
a line of the form y = αnβ that goes through the set of observed data for the large
values of n (where we expect/hope that the asymptotic model holds).

3a. Solve the d-dimensional Poisson problems of the preceding question using Gaussian
elimination.† Specifically, use a lexicographical ordering for the rows and columns of
A. For example, the vector of unknowns in the 3D case would be

[u1 u2 u3 · · · ul · · · un]T = [u111 u211 u311 · · · uijk · · · ummm]T . (7)

For the direct method, you will need to form A. The easiest way to do so is (e.g., in
3D) to set A = I1 ⊗ I1 ⊗ A1 + I1 ⊗ A1 ⊗ I1 + A1 ⊗ I1 ⊗ I1, where I1 is the m×m
identity matrix and A1 is the standard tridiagonal SPD operator for the 1D Poisson
problem. Make certain that I1 and A1 are declared as sparse matrices so that the
(very large) matrix A will also be sparse.

In matlab, the 3D A matrix can be formed as:

e=ones(m,1);

Ax=spdiags([e -2*e e], -1:1, m, m);

dx = 1./(m+1);

Ax = -Ax./(dx*dx); Ix = speye(m);

A2 = kron(Ix,Ax) + kron(Ax,Ix);

A = kron(Ix,A2) + kron(Ax,kron(Ix,Ix));

†Note: to force the codes to solve the system without re-ordering, we will actually time the operation
LU=lu(A), rather than the time for solution of Au = b.

3



For d = 1, 2, and 3, consider a sequence of problem sizes, m = b2
k
2 c, for k = 1, 2,

3,. . . ,kmax. Measure the time t (seconds) required to compute the LU factorization of
A for each (k, d) pair and, for d = 1 plot t vs. n. In a different color, plot the results
for d = 2 on the same graph, and again use a third color to add the results for d = 3.
For the 3D case, just use m = 1, 2, 3, 4,. . . ,20, but go higher if you can, so that you
can better understand the asymptotic behavior.

For each space dimension, take kmax to be large enough that n = 8000 or more. Note:
I suggest to not try to do all space dimensions in a single run because the required
values of m are quite different. Also, don’t take a very large value of kmax initially—
work your way up to tolerably large values until everything is working in your code.
Most of the runtime ends up being spent on the case k = kmax.

In matlab, the timing would look something like:

t0=tic; %% Warm-start

[L,U]=lu(A);

elapsed1(k) =toc(t0);

t0=tic; %% Actual time

[L,U]=lu(A);

elapsed2(k) =toc(t0);

mflops(k) = (flops/elapsed2)/1.e6;

disp([k m n elapsed1(k) elapsed2(k) mflops(k)])

The warm start is designed to preload L and U so that you’re not measuring overhead
associated with memory allocation. The time you plot would be elapsed2(). Here,
flops, would be the estimated number of operations to perform the LU decomposi-
tion, from your table of question 2.

3b. Solve the d-dimensional Poisson problems of the preceding question using Jacobi
iteration. Set the relative tolerance to tol = 10−6 and the maximum iteration count
to imax = 106. Don’t bother timing cases for any value of n > nfail, where nfail is the
size of the first problem where the relative residual norm is > tol after imax iterations.
Make a plot similar to that for 3a, with time on the y axis and n on the x axis of a
loglog plot. Add to this plot a plot of iteration counts, using the same colors as for
d = 1, 2 and 3, but a different symbol than used for the timing.

3c. Solve the d-dimensional Poisson problems of the preceding question using the fast
diagonalization method (FDM). Make a similar plot with three graphs, one for each
space dimension. I suggest you form the scaled eigenvector matrix explicitly, rather
than by calling eig(). As a reminder, the 1D matrix of orthonormal eigenvectors can
be generated as

i=[1:m]’;

4



Figure 1: Matlab and Octave timings for direct solver on MacBook Pro (Intel I7).

ij=i*i’;

h = 1./(m+1);

scale = sqrt(2*h);

S = scale*sin(ij*(pi/(m+1));

Verify that this S satisfies two properties:

• STS = I

• STAS = Λ

where Λ is the matrix of eigenvalues, λk = 2
h2

(
1− cos πk

m+1

)
.

Note, one should nominally count the construction of S in the “solve” time. (Really,
it’s part of the “factor” time.) You may choose to do so, or you can leave it out. In
the important 3D case, the setup time for S is negligible, even for the general case
where we must use eig() to find the eigenvalues and eigenvectors.

ANS: Figure 1 shows the timings using direct solvers on my Macbook Pro (2017 Intel i7). In
addition to 1D, 2D, and 3D, I’ve put the factor times for a full n×n matrix. The solid lines are the
model fits for Matlab and they have the correct exponent. Surprisingly, Octave outperforms Matlab
on my Mac. (The solid lines on the Octave plot are from the Matlab fits.) When I run Matlab, it
shows 400% utilization, which I assume means that all 4 cores are running flat out. When I run
Octave, it shows 750% utilization – clearly, the vector registers are being heavily used.

The plot on the right compares several solvers for the 3D case only. (Apologies, I haven’t yet
organized all the runs for the lower-dimensional problems.) From this plot we see that FDM is defi-
nitely the fastes on my Mac - even beating conjugate gradient iteration, which outperforms Jacobi.
Note that the nested dissection (ND) results here were in fact based on a symmetric approximate
minimal degree ordering (SYMAMD in Matlab), which has complexity similar to ND.

I will update these plots in the near future.

Regarding the summary questions below, the question as to which is the fastest approach de-
pends first and foremost on the dimension of the problem and is independent of n, for even modestly
large n. FDM is fine for the constant-coefficient case, or under suitable conditions of separability of
the governing PDE. It can potentially be used as a preconditioner in the variable coefficient case.
Iterative methods might ultimately prevail, especially with projection (e.g. PCG), polynomial ac-
celerators, and preconditioners. In 1D, it will be difficult to beat a direct tridiagonal solve, even in

5



a parallel computing context. 2D is the contest battleground, for which I would give a slight edge
to direct methods, particularly if one considers SYMAMD or ND orderings.

4. Discuss the observations from your plots of question 3. Specifically,

• Do your observed timings match the expected complexity estimates of part 2?

• If not, what might be the cause for the discrepancy?

• Which solution strategy is fastest?

• How does dimensionality, d, play a role in choosing a solver?

Pay particular attention to the last of these questions.

6


