CS556 Iterative Methods Fall 2024 Homework 3.

Due Tuesday, Oct. 8, 5 PM.

1. Conjugate Gradient Convergence. Consider the $n \times n$ SPD matrix

$$A = VDV^T, (1)$$

where V is orthonormal and $D=\text{diag}(1, 2 \dots n-1, M)$, with $M := n^2$. Let A_n be defined in the same way as A, save that M = n.

- What is the condition number of A_n ?
- What is the condition number of A?
- Using the CG error bound (e.g., Eq. (25) of the "projection2a.pdf" from the 9-24-2024 notes on Relate), estimate the number of iterations k required to reach a *relative* error tolerance, $tol=2 \times 10^{-8}$ in the A-norm or A_n -norm when solving a system in A or A_n , respectively. (Use actual logarithms, rather than the quick estimates we used in class.) Please show the steps used to reach your given estimate.
- Challenge. Let k_{\max} and k_n denote your estimated iteration counts from the preceding question. Use the best-fit principles of CG to show that the number of CG iterations for solving $A\underline{x} = \underline{b}$ to tolerance tol is bounded by $k_n + 1$. Hint: Think carefully about a polynomial that would solve the discrete minimax problem.
- Code up CG Saad (2nd Ed.) Alg. 6.18 and solve A<u>x</u> = <u>b</u> with random rhs <u>b</u> with n = 101. What number of iterations do you find to reach a relative A-norm error tolerance of tol=2×10⁻⁸? (Note that V can be generated as [V,R]=qr(rand(n,n));.
- Make a semilogy plot of $\|\underline{e}_k\|_A / \|\underline{x}\|_A$ and $\|\underline{r}_k\|_2 / \|\underline{b}\|_2$ vs. k, both on the same graph, and comment on your observations for the graph and the overall analysis.

2. Coarse-Grid + Diagonal Preconditioning.

• Full description to be announced.