
Summary and Trajectory

• Compexity estimates as a function of space dimentions, d:

– banded solvers

– nested dissection

– fast diagonalization

– simple iterative solvers (Jacobi, CG)

• Subsequently –

– FEM

– matrix and vector norms

– projection methods (CG, GMRES, biCGSTAB,...)

– preconditioners

– multigrid

Today

• nested dissection (quick review and complexity)

• fast diagonalization method (FDM)

• Jacobi (and CG complexity)



Nested Dissection Orderings

• So far, we’ve considered lexicographical orderings in which we enumerate nodes in
the graph by advancing first in one direction, then the next, and so on.

• Other orderings such as symmetric-approximate-minimal-degree (symamd in mat-
lab) and nested-dissection [George’73,Martinsson’14,Schmitz&Ying’14] are designed
to minimize fill in the LU factors.

• We consider nested-dissection here, which we illustrate via a 2D example.

• Consider the graph below, shown initially with a lexicographical ordering.



• To begin, we identify the smallest separator set that cuts the graph into two (nearly)
equal pieces and enumerate the entries of that separator.

• Next, we do the same with one of the subgraphs.

• Following a depth-first traversal, we enumerate the remaining subgraphs in a recur-
sive way.

• The first few separators are shown below.

• Here, 11–12 and 13–14 represent the leaves of the tree.



• Finally, we reverse the ordering so that the first separator is enumerated last: k =
(n+ 1)− k for k = 1, . . . , n.

• We can see what this ordering does to the matrix A in the image below.



• On the left we have the pentadiagonal matrix from the lexicographical ordering and
on the right that coming from the nested-dissection (ND) ordering.

• Notice the recursively smaller isolated principal submatrices of the ND-ordered ma-
trix.

• It is clear that at least 4-way parallelism can be applied in factoring the four 6× 6
blocks, and 2-way parallelism in the larger 15× 15 blocks.

• Additionally, we see the 5× 5 tridiagonal matrix in the lower right corner, which is
associated with the principal separator that has 5 nodes.

• Now look at the LU factors for these two matrices.

• Notice that the ND case has fewer nonzeros than the lexicographical case.



• The fill reduction is even more dramatic for the inverse factors, U−1.

• Clearly, lexicographical leads to ∼ n2/2 nonzeros in U−1.

• For ND, it is easy to show that U−1 has < 3n
3
2 nonzeros in the 2D case and < 2.5n

5
3

nonzeros in the 3D case.

• Generally, one would not compute U−1, but it is a reasonable strategy for developing
fast parallel coarse-grid solvers.



• ND can be extended to unstructured graphs, e.g., finite-elements.

• Recursive coordinate bisection (RCB) or (better) recursive spectral bisection (RSB)
[Pothen& Simon’91] can be used to partition the graph.

• Typically, you would want to partition on the dual-graph having nodes at the element
centers. (Why?)

• ND works for variable-coefficient problems—no change to the algorithm (at least,
for the positive-definite case).

• Ordering of the subdomain interior DOFs can influence the fill.

• For the constant coefficient case, fast Poisson solvers are much faster, with O(n log n)
complexity for the uniform grid case (fishpack), or ∼ 12n

4
3 (all BLAS3) if the grid

is based on a 3D tensor product of nonuniform one-dimensional grids.



• Three articles/notes: George’73, Martinsson ’14, Schmitz & Ying ’14.

• For an N×N grid in 2D or N×N×N grid in 3D, we have the following complexities:

Lexicographical Nested-Dissection

2D Factor Cost ∼ 2n2 ∼ (19.07 . . . )n
3
2

2D Solve & Storage Cost ∼ 2n
3
2 ∼ 31

8 n log2 n

3D Factor Cost ∼ 2n
7
3 O(n2)

3D Solve & Storage Cost ∼ 2n
5
3 O(n

4
3 )

• Note that the constants in the lexicographical case are very small.

• The constants for the nested dissection are less clear. (Martinsson’s
notes do not account for the complexity of the side blocks, L−1

ii AiΓ.)

• The constants for the 2D nested dissection are from A. George’s 1973 paper.

• Note that 20n
3
2 < 2n2 for n > 100—meaning it starts to pay for 2D problems that

are larger than 10× 10.

• The costs, however, will be relatively (2-10×) higher for nested-dissection because
indirect addressing will increase memory traffic and inhibit pipelined arithmetic. So
ND may require a slightly larger value of N to be competitive. This hypothesis could
be tested in matlab.



Poisson Equation in lR3

We now extend the 1D and 2D concepts to the most important 3D case. The short story
is that the 3D stiffness matrix has the beautifully symmetric form

A3D = (Iz ⊗ A2D) + (Az ⊗ I2D) (1)

= (Iz ⊗ Iy ⊗ Ax) + (Iz ⊗ Ay ⊗ Ix) + (Az ⊗ Iy ⊗ Ix).

and the discrete system is, as before, A3Du = f . This of course is the form that arises
for a finite difference discretization of −∇2u = f in Ω = [0, 1]3, u = 0 on ∂Ω, or, more
explicitly,

−
(
δ2u

δx2
+
δ2u

δy2
+
δ2u

δz2

)
= f(xi, yj, zk), (2)

with

δ2u

δz2

∣∣∣∣
ijk

:=
uij,k+1 − 2uijk + uij,k−1

∆z2
, (3)

and equivalent expressions for δ2u
δx2 and δ2u

δy2 .

Note that, with (1), we really have not restricted ourselves to uniform mesh spacing
in each direction. We could have different grid spacing ∆x, ∆y, and ∆z and a different
number of mesh points nx, ny, and nz, in each of the space directions. Then, Ix would
be the nx × nx identity matrix and Ax would be the corresponding stiffness matrix, as
would also be the case for y and z. (Note also that we could even relax the condition of
uniform spacing in each of the space directions.)

Quiz:
• Assume that we solve the Poisson problem on Ω = [0, L]d with grid spacing h =
L/N in each of d space dimensions, d = 2 or 3. If the unknowns are ordered
lexicographically, what is the matrix bandwidth of the system matrix A for the case
d = 2?

• For d = 3?

• What is the number of unknowns, n for each case, d = 2 and 3?



Kronecker Product Matrix Properties

Kronecker products have several useful properties in the the solution of PDEs and (more
recently) in machine learning, which is driving the development of specialized software
and hardware for Kronecker product application and manipulation. (Unfortunately, much
of this development is targeting 16-bit operations, which is not sufficient for most scientific
computing applications.) There are two main properties of interest, the matrix-product
rule and matrix-vector products.

For, completeness, we recall that the the Kronecker product of two matrices A and B
is defined as the block matrix

C = A⊗B :=


a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB

...
...

...
am1B am2B · · · · · · amnB

 . (4)

We note that if A and B are each N × N matrices, then C is a much larger N 2 × N 2

matrix, with N 4 nonzeros in the case when A and B are full. We also note that I ⊗ B
and A⊗ I have a special structure.

I ⊗B =


B

B
. . .

B

 , (5)

A⊗ I =


a11I a12I · · · a1nI

a21I a22I · · · a2nI
...

... . . . ...
am1I am2I · · · amnI

 . (6)

Thus, I ⊗B is block-diagonal, whereas A⊗ I comprises diagonal blocks.



The most important property of Kronecker products for the purposes of PDEs is the
matrix-product rule. Suppose we have C and F satisfying

C = A⊗B, F = D ⊗ E.

Then, straightforward application of (4) reveals that the matrix product CF is given by

CF = (A⊗B)(D ⊗ E) = AD ⊗BE, (7)

under the assumption that the dimensions of (A,D) and (B,E) are such that the products
AD and BE make sense.



The product rule (7) leads to several notable properties that we now describe. To
simplify the exposition, we’ll assume that A and B are N ×N matrices unless otherwise
noted.

• Inverse. The inverse of C = A ⊗ B is C−1 = A−1 ⊗ B−1. Thus, the inverse of an
N 2 ×N 2 matrix can be found by inverting (or, more typically, factoring) two much
smaller N ×N matrices.

• Eigenvalues. Let C = By ⊗ Bx and suppose that there exists a diagonalization of
Bx and By given, for Bx, by S−1

x BxSx = Λx, with Sx the matrix of eigenvectors and
Λx the diagonal matrix containing, with a similar form for By. Then

C = By ⊗Bx = (SyΛyS
−1
y ) ⊗ (SxΛxS

−1
x ) (8)

= (Sy ⊗ Sx)︸ ︷︷ ︸
S

(Λy ⊗ Λx)︸ ︷︷ ︸
Λ

(S−1
y ⊗ S−1

x )︸ ︷︷ ︸
S−1

. (9)

Thus, the N 2 × N 2 eigenvalue problem CS = SΛ is solved by solving two small
(N ×N) eigenvalue problems, which lead to S = Sy ⊗ Sx and Λ = Λy ⊗ Λx.



• Matrix-Vector Product. Suppose S = Sy ⊗ Sx and we wish to evaluate the
matrix-vector product w = Sf , where f is assumed to have a natural dual-subscript
ordering, {fij}, as in Fig. ??. If we evaluate w by first forming S, then the storage
and work rises sharply from O(N 2) to O(N 4). Instead, we evaluate the product in
factored form,

w = (Sy ⊗ Ix) (Iy ⊗ Sx)f. (10)

The first evaluation generates the vector v := (Iy ⊗ Sx)f , which has entries

vij =

nx∑
p=1

(Sx)ipfpj, i ∈ [1, . . . , nx], j ∈ [1, . . . , ny]. (11)

which can be seen by inspecting the figure preceding Eq. (??). Assuming Sx is full,
the cost of computing v is 2nx for each of the nynx entries, or O(N 3).

The next step is evaluation of w = (Sy ⊗ Ix)v.

wij =

ny∑
q=1

(Sy)jqviq, (12)

which has cost 2n2
ynx.

Note that significant performance gains (up to an order-of-magnitude) can be re-
alized by recognizing that the doubly-indexed vectors, w, v, and f can be viewed
as corresponding ny × nx matrices, W , V , and F . In this case, the matrix-vector
product evaluation (10) can be expressed in matrix-matrix product form:

W = SxFS
T
y . (13)

Or, in general, for any v = (A⊗B)u, we have V = B UAT . Matrix-matrix products
are some of the most efficient operations possible in numerical computation because
the require only O(N 2) memory references for O(N 3) operations, so the form (13) is
generally very fast.



Matrix-vector products involving third-order tensors of the form A = Az ⊗Ay ⊗Ax

can be evaluated with similar efficiencies. In partcular, z = Au would be evaluated
as

vijk =

nx∑
p=1

(Ax)ipupjk v = (Iz ⊗ Iy ⊗ Ax)u (14)

wijk =

ny∑
q=1

(Ay)jqviqk w = (Iz ⊗ Ay ⊗ Ix)v (15)

zijk =

nz∑
r=1

(Az)krwijr z = (Az ⊗ Iy ⊗ Ix)w, (16)

which has a total operation count of O(N 4) and storage count of O(N 3) for the input
and output data. It is also possible, with minor effort, to recast (14)–(16) in terms
of fast matrix-matrix products. (Recall, in 3D, N 3 ≈ n.)



Fast Diagonalization Method (FDM)

• We will use the tools of the preceding section to develop fast solvers for the constant-
coefficient 2D and 3D lexicographicallly-ordered cases.

• This idea originated in a 1964 paper by Birkhoff, Lynch, and Rice that predates the
FFT by one year. In the present exposition we assume that A∗ is the tridiagonal
1D Poisson operator of the preceding section, but the method carries through with
the same complexity even if A∗ is full (e.g., as might be the case for a high-order
approximation to the Poisson operator).



• To start, we assume that the 1D matrices A∗ have the similarity transform

A∗ = S∗Λ∗S
−1
∗ , (17)

for ∗=x, y, and z, where Λ∗ is the diagonal matrix of eigenvalues and S∗ the corre-
sponding matrix of eigenvectors. (Always true if A∗ = AT

∗ .)

• For the 2D case, we have

A2D = (Iy ⊗ Ax) + (Ay ⊗ Ix) (18)

= (SyS
−1
y ⊗ SxΛxS

−1
x ) + (SyΛyS

−1
y ⊗ SxS−1

x ) (19)

= (Sy ⊗ Sx) (Iy ⊗ Λx + Λy ⊗ Ix) (S−1
y ⊗ S−1

x ), (20)

whose inverse is given by

A−1
2D = (Sy ⊗ Sx)D−1 (S−1

y ⊗ S−1
x ), (21)

(22)

with the trivially inverted diagonal matrix

D := (Iy ⊗ Λx + Λy ⊗ Ix). (23)

• Aside from the preprocessing costs to find [S∗,Λ∗], the total work is ≈ 8N 3, assuming
Nx = Ny = N .



• Let’s look more closely at the steps of the FDM.

• Starting with known grid data, f = [f11 f21 · · · fnxny ], we compute the solution to
Au = f as

u = (Sy ⊗ Sx)︸ ︷︷ ︸
S

D−1︸︷︷︸
Λ−1

(S−1
y ⊗ S−1

x )︸ ︷︷ ︸
S−1

f, (24)

where we have emphasized that S := (Sy ⊗ Sx) is the matrix of eigenvectors of
A := A2D and Λ is the corresponding matrix of eigenvalues.

• Breaking the operation down further:

i) f̂ = (S−1
y ⊗ S−1

x ) f Fourier transform of data

iii) û = D−1f̂ divide by wavenumbers squared

iii) u = (Sy ⊗ Sx) û combine eigenvectors to construct solution.

(25)



• The “Fourier” transform requires two tensor contractions of the form (13), which
are implemented as

F̂ = S−1
x F S−Ty , (26)

requiring ∼ 2(2N 3) floating point operations.

• Here we let capital F denote the “matrix form” of f , etc.

• Division by the eigenvalues requires ∼ N 2 � N 3 operations.

• Finally, the inverse transform is expressed as a second pair of tensor contractions,

U = Sx Û Sy, (27)

such that the total complexity is ∼ 8N 3.

• Here, we are neglecting the cost to find the eigenpairs as these are known in closed-
form.

• For more general cases, we could call an eigenvalue solver to find (Sx,Λx) and (Sy,Λy)
as part of a one-time setup.



• It is important to note that, for the uniformly-spaced grid case, the O(N 3) com-
plexity can be reduced to O(N 2 logN) by use of the FFT. This approach is used by
fishpack, which s about 10–20× faster than multigrid for 2D problems.

• An interesting aside about the fast diagonalization method is that it allows us to
easily solve systems of the form g(A)u = b.

• In 2D, the answer is

u = (Sy ⊗ Sx)G−1 (S−1
y ⊗ S−1

x )u, (28)

where G is the diagonal matrix with entries Gss = f(λx,k+λy,l), with s = k+nx(l−1)
for k = 1, . . . , nx and l = 1, . . . , ny.



• The 3D version of the FDM is similar to 2D:

A−1
3D = (Sz ⊗ Sy ⊗ Sx)D−1 (S−1

z ⊗ S−1
y ⊗ S−1

x ), (29)

(30)

with

D := (Iz ⊗ Iy ⊗ Λx + Iz ⊗ Λy ⊗ Ix + Λz ⊗ Iy ⊗ Ix). (31)

• The work is ≈ 12N 4.

• The setup costs are nil. (Why?)

• Fast diagonalization is readily extended to the more general case that arises in finite
element methods,

A3D = (Bz ⊗By ⊗ Ax) + (Bz ⊗ Ay ⊗Bx) + (Az ⊗By ⊗Bx), (32)

where B∗ is the mass matrix in the “*” direction.

• The corresponding one-dimensional eigenpairs are solutions to the generalized eigen-
problem, A∗S∗ = B∗S∗Λ∗, with eigenvectors normalized to satisfy ST∗ B∗S∗ = I∗.



• Q: What are the eigenvalues of A2D and A3D in the finite difference case on an Nd

grid with n = (N − 1)d unknowns?

• Recall that, for the 1D case,

λk =
2

h2

(
1− cos

πk

N

)
, (33)

for k = 1, . . . , N − 1 and h = L/N .

• Hint: Look at the entries of Λ.



Cost Analysis: Jacobi Iteration

• Recall our Jacobi iteration from Lec. 1, with D := diag(A).

• We can express this in two ways,

Analysis:

x0 = 0

for k = 1 : kmax

xk = xk−1 + D−1(b− Axk−1)

Practice:

x = 0

for k = 1 : kmax

x = x + D−1(b− Ax)

• Two main questions arise re. complexity:

(1) How much work per iteration?

(2) How many iterations?



• To address the first, consider more realistic loops:

x = 0, r = b

for k = 1 : kmax

α = ‖r‖2 =
√
rTr

if α < tol, break.

x = x + D−1r

r = b − Ax

end

• A better approach is:

x = 0, r = b

for k = 1 : kmax

s = D−1r

α = ‖s‖2 =
√
sTs

if α < tol, break.

x = x + s

r = r − As

end

• Q: How many operations for each step, as a function of d?

• Quick summary:
d = 1 : 10n · k
d = 2 : 14n · k
d = 3 : 18n · k

• We see that the cost per iteration is only weakly dependent on d!



• What about the number of iterations?

• To analyze this question, we’ll need some norms to measure the error.

• Let’s start with the vector 2-norm,

‖x‖2 :=
√
xTx =

(
n∑
j

x2
j

) 1
2

. (34)

• With this vector norm, we have an associated matrix norm,

‖A‖2 := max
x∈lRn

‖Ax‖2

‖x‖2

(35)

:= max
‖x‖=1

‖Ax‖2. (36)

• We see that ‖A‖2 is identified with the maximum stretching (growth) of any input
vector x.

• For the case of A = AT , we have ‖A‖2 = ρ(A).

• Therefore, we know the 2-norm of A for our finite difference matrices!

• Which matrix do we need the 2-norm for to understand the error behavior of Jacobi
iteration?


