
Richardson vs. Jacobi Iteration for Au = f

• We’ve already seen Jacobi iteration:

uk+1 = uk + D−1(f − Auk). (1)

• For the case where −A is the centered-difference approximation to the Laplacian with uniform grid
spacing, h, we know that

D = a11I. (2)

• That is, multiplying by D−1 is equivalent to multiplying by a constant, α = 1/a11.

• This simple iteration scheme is known as Richardson iteration,

uk+1 = uk + α(f − Auk). (3)

(4)

• Richardson has a direct relationship to time stepping as we illustrate shortly.

• Assuming that we start with u0 = 0, Richardson iteration also yields a solution that is a polynomial
in the matrix A times the data, f .



Polynomial Approximation Spaces

• Consider the first few Richardson iterates, starting with u0 = 0,

u1 = 0 + αf ∈ lP0(A)f

u2 = u1 + α
(
f − Au1

)
= αf + α

(
f − αAf

)
= 2αf − α2Af ∈ lP1(A)f

u3 = 2αf − α2Af + α
(
f − αAu2

)
= 3αf − 3α2Af + α3A2f ∈ lP2(A)f

(5)

• It appears that uk ∈ lPk−1(A)f , where lPj(x) is the space of polynomials of degree ≤ k in the
argument x.



• A more direct way of seeing this polynomial form is to consider the error,

ek := u − uk = (I − αA)ke0 (6)

= (I − αA)ku (7)

=
[
I + c1A + c2A

2 + · · · + ckA
k
]
u, (8)

where the coefficients cj come from the binomial expansion (and involve powers of α).

• Solving for uk and exploiting the fact that Au = f , we have:

uk = −
[
c1A + c2A

2 + · · · + ckA
k
]
u (9)

= −
[
c1 + c2A + · · · + ckA

k−1
]
f (10)

∈ lPk−1(A)f. (11)

• The space lPk−1(A)f is referred to as the k-dimensional Krylov subspace,

Kk(A)f = span
{
f, Af, A2f, . . . , Ak−1f

}
. (12)

• Note that a preconditioned iteration scheme of the form

uk+1 = uk + M−1(f − Auk) (13)

would lead to

uk ∈ Kk(M
−1A)M−1f, (14)

where M is the preconditioning matrix or preconditioner.

• For Jacobi iteration, D is the preconditioner.

• All of these methods are Krylov-subspace methods, because they produce a solution in Kk.

• They are not, however, Krylov-subspace projection (KSP) methods, because they do not produce the
best approximation in the space.



• KSPs are the next topic of interest.

• These methods generate the projection of u onto Kk in a computable norm, and thus find the closest
element in Kk to the unknown u.

• For A SPD, we will consider CG and also preconditioned CG (PCG), for the case where M is also SPD.

• For nonsymmetric systems, we will consider GMRES and other alternative methods.

• Before moving on to projection, we make a few more comments about Richardson iteration and its
relationship to time stepping.



Relationship to Time Stepping

• Consider the system of ODEs (with L = −A)

du

dt
= Lu + f, u0 = 0, (15)

• Three common time steppers for this problem are

Euler Forward (EF): uk+1 = (I + ∆tL)uk + ∆tf

Euler Backward (EB): (I −∆tL)uk+1 = uk + ∆tf

Crank-Nicolson (CN): (I − ∆t
2
L)uk+1 = (I + ∆t

2
L)uk + ∆tf

• EF and EB are O(∆t) (first-order) accurate.

• CN (also known as the trapezoidal rule) is O(∆t2) (second-order) accurate.

• pth-order accurate means that ‖ũ(T )− u(T )‖ = O(∆tp) as λL∆t −→ 0.

• Under the assumption that Re(λL) < 0, the differential equation (15) evolves
to a steady-state solution, u∞, which satisfies

−Lu∞ = f. (16)

• The error, ek := u∞ − uk satisfies the homogeneous equation,

de

dt
= Le, e0 = u∞. (17)



• Let’s look at Euler-Forward,

uk+1 = (I + ∆tL)uk + ∆tf (18)

= (I −∆tA)uk + ∆tf (19)

= uk + ∆t(f − Auk). (20)

• We see that it is exactly the same as Richardson iteration with α ≡ ∆t.

• Notice that, if Re(λL) < 0, it is always possible to find a ∆t for which λL∆t is inside the
EF stability region.
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• For example, in the figure above, the circle (◦) represents a value of λL∆t that is outside
the stability region, i.e.,

| 1 + λL∆t | > 1. (21)

• We can rectify this situation by reducing ∆t.

• In this example, reducing ∆t by a factor of 2 leads to the value of λL∆t represented by
the bullet (•), which is inside the stability region.

• For an n-dimensional system of equations, we must choose ∆t such that all values of
λL,k∆t are in the stability region:

| 1 + λL,k∆t | < 1, k = 1, . . . , n, (22)

which is always possible.



• As a consequence, we can assert that it always possible to find an α such that Richardson
iteration will converge, provided that Re(λA,k) > 0, k = 1, . . . , n.

• Assuming that A has real positive eigenvalues with 0 < λA,1 ≤ · · · ≤ λA,n, the optimal value of α is
given by

αopt =
2

λA,1 + λA,n
. (23)

(See Saad, Eq. (4.33).)



• Let λL = −λA denote the eigenvalues of L.

• The growth factors for the three time steppers in terms of λL are

GEF = 1 + ∆tλL (24)

GEB =
1

1 −∆tλL
(25)

GCN =
(1 + ∆t

2
λL)

(1− ∆t
2
λL)

(26)

• Note that the Taylor series for each of these expressions agrees with the first few
terms of the analytical growth factor,

G̃ = eλL∆t = 1 + λL∆t+
(λL∆t)2

2!
+

(λL∆t)3

3!
+ · · · (27)

• EB and CN are stable, which means that |G| < 1 for all Re(λL∆t) < 0.

• The corresponding stability regions in the complex λL∆t plane are shown below (with h = ∆t the
time step size).

EF EB CN



• For real λL < 0, we can also plot the growth factors as a function of λL∆t:

• Notice that the growth factor for EB does not change signs nor cross the x-axis.

• The growth factor for EF changes sign whenever λL∆t = −1 and exceeds 1
in modulus if λL∆t < −2.

• The growth factor for CN changes sign whenever λL∆t = −2.

• For a given λL, we can therefore zero out the error associated with that value
by taking a single step with ∆t = 2

λL
.

• Notice that, from an iterative solver perspective, EF is interesting because it doesn’t
require solving a system on each “time step” (which is analogous to a single Richardson
iteration with α = ∆t).

• On the other hand, the trapezoidal rule (also known as Crank-Nicolson), is interesting
because it has a zero crossing, it is stable for all λL∆t, and, for tensor-product grids,
and there exist approximate solvers for the “implicit” part of the CN update, which are
known as alternating-direction implicit (ADI) methods.

• ADI can be very fast, as we will see in future exercises.


