Richardson vs. Jacobi Iteration for Au = f

e We've already seen Jacobi iteration:

wey = uw, + D7N(f — Auy). (1)

For the case where —A is the centered-difference approximation to the Laplacian with uniform grid
spacing, h, we know that

D = (111[. (2)

That is, multiplying by D~! is equivalent to multiplying by a constant, o = 1/ay;.

This simple iteration scheme is known as Richardson iteration,

Wy = w +a(f — Aw). (3)

Richardson has a direct relationship to time stepping as we illustrate shortly.

e Assuming that we start with w, = 0, Richardson iteration also yields a solution that is a polynomial
in the matrix A times the data, f.



Polynomial Approximation Spaces

e Consider the first few Richardson iterates, starting with u, = 0,

w = 0+ af e Py(A)f

u, = u; + Oé(i_A%)

= af +a(f - adf)
— 2af — a2Af € IPy(A)
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uy = 2af — o*Af + o(f — adu,)
= 3af — 3a’Af + PA%f ePy(A)f

e It appears that u, € Py 1(A)f, where IP;(x) is the space of polynomials of degree < k in the
argument x.



e A more direct way of seeing this polynomial form is to consider the error,

e, = u —u, = (I—ad)le (6)
— (- ad)fu 7)
= [I + 1A+ A% + -+ CkAk] u, (8)

where the coeflicients ¢; come from the binomial expansion (and involve powers of «).

e Solving for u;, and exploiting the fact that Au = f, we have:

u, = —[cA+ A+ -+ gAlu (9)
= [+ A+ -+ gAY f (10)
€ Py(A)f. (11)

e The space IP_1(A)f is referred to as the k-dimensional Krylov subspace,

Ki(A)f = span{f, Af, Af,... A" 'f}. (12)

e Note that a preconditioned iteration scheme of the form
U1 = W + M_l(i - Aﬂk) (13)
would lead to

w, € Kpy(MTAM™, (14)

where M is the preconditioning matrix or preconditioner.

e For Jacobi iteration, D is the preconditioner.
e All of these methods are Krylov-subspace methods, because they produce a solution in K.

e They are not, however, Krylov-subspace projection (KSP) methods, because they do not produce the
best approximation in the space.



KSPs are the next topic of interest.

These methods generate the projection of u onto Ky in a computable norm, and thus find the closest
element in K} to the unknown wu.

For A SPD, we will consider CG and also preconditioned CG (PCG), for the case where M is also SPD.

For nonsymmetric systems, we will consider GMRES and other alternative methods.

Before moving on to projection, we make a few more comments about Richardson iteration and its
relationship to time stepping.



Relationship to Time Stepping
e Consider the system of ODEs (with L = —A)

du
d—; = Lu + f, uy=0, (15)

Three common time steppers for this problem are
Euler Forward (EF):  w,,, = (I +AtL)u, + Atf
Euler Backward (EB): (I — AtL)u,,, = w, + Atf

Crank-Nicolson (CN): (I — &'L)w,y = (I +4!L)y, + Atf

EF and EB are O(At) (first-order) accurate.

e CN (also known as the trapezoidal rule) is O(At?) (second-order) accurate.

pth-order accurate means that ||a(7T") — w(T)|| = O(At?) as ALAt — 0.

Under the assumption that Re(\;) < 0, the differential equation (15) evolves
to a steady-state solution, u__, which satisfies

=007

—Lu, = f. (16)

The error, e, := u_, — u; satisfies the homogeneous equation,

d—? = Le, €)= uy. (17)



e Let’s look at Euler-Forward,

weyy = (I+AtL)u, + Atf (18)
= (I - AtA) )y, + Atf (19)
= U, + At(i_ Auy). (20)

e We see that it is exactly the same as Richardson iteration with o = At.

e Notice that, if Re(Ar) < 0, it is always possible to find a At for which A At is inside the
EF stability region.
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For example, in the figure above, the circle (o) represents a value of A\ At that is outside
the stability region, i.e.,

|1+ A AL > 1 (21)

e We can rectify this situation by reducing At.

In this example, reducing At by a factor of 2 leads to the value of A\; At represented by
the bullet (o), which is inside the stability region.

For an n-dimensional system of equations, we must choose At such that all values of
LAt are in the stability region:

|1—|—)\L7kAt| < 1, k:zl,...,n, (22)

which is always possible.



e As a consequence, we can assert that it always possible to find an « such that Richardson
iteration will converge, provided that Re(Aay) >0, k=1,...,n.

e Assuming that A has real positive eigenvalues with 0 < As; < -+ < A4, the optimal value of « is
given by
2
o = — 23
opt Aag+ Aan (23)

(See Saad, Eq. (4.33).)



e Let A\ = —\4 denote the eigenvalues of L.

e The growth factors for the three time steppers in terms of A\ are

Gpr = 1+ Ath, (24)

Gop = — (25)
BT AL
(1+48)

G = 2 26

e Note that the Taylor series for each of these expressions agrees with the first few
terms of the analytical growth factor,

G = eMA = 14+ )\ At +

A At)? A A3
(AL )+(L )Jr

2! 3! (27)

e EB and CN are stable, which means that |G| < 1 for all Re(A At) < 0.

e The corresponding stability regions in the complex Ay At plane are shown below (with A = At the
time step size).
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For real A\, < 0, we can also plot the growth factors as a function of Ay At:

Growth Factor: Euler Forward s Growth Factor: Euler Backward s Growth Factor: Trapezoidal Rule
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e Notice that the growth factor for £ B does not change signs nor cross the z-axis.

e The growth factor for EF' changes sign whenever A\ At = —1 and exceeds 1
in modulus if A\ At < —2.

e The growth factor for C'N changes sign whenever A\ At = —2.

e For a given \j, we can therefore zero out the error associated with that value
by taking a single step with At = %

e Notice that, from an iterative solver perspective, FF' is interesting because it doesn’t
require solving a system on each “time step” (which is analogous to a single Richardson
iteration with a = At).

e On the other hand, the trapezoidal rule (also known as Crank-Nicolson), is interesting
because it has a zero crossing, it is stable for all A\f At, and, for tensor-product grids,
and there exist approximate solvers for the “implicit” part of the C'N update, which are
known as alternating-direction implicit (ADI) methods.

ADI can be very fast, as we will see in future exercises.



