1 Iterative and Multigrid Solvers

• We are concerned with solution of the $n \times n$ system,

$$A\underline{x} = \underline{b}, \tag{1}$$

where we should think of A as being *sparse* (i.e., it has O(n) nonzero entries) and n as being *large* (e.g., 10^4 – 10^{14}).

- Ultimately, computational scientists (not developers) are generally interested in methods that are the *fastest* possible for their given application, so we will also review a variety of *direct methods* before delving into *iterative methods*, which are the topic of this course.
- Q: What is the complexity (i.e., cost) for solving (1) when A is tridiagonal?
 - 1. Do you know any systems where A is tridiagonal?
 - 2. How many nonzeros in A?
 - 3. How many nonzeros in A^{-1} ?
 - 4. How many nonzeros in the LU factors, A = LU?
 - 5. How many nonzeros in the inverse LU factors, L^{-1} , U^{-1} ?
 - 6. Suppose you reorder the equation numbering; do these answers change?

2 Vector/Parallel Performance

- Time-to-solution is governed not only by the number of nonzeros in the relevant system matrices, but also by the number of operations and the *order* in which values are retrived by memory.
- Poorly-structured algorithms can easily take a factor of 10 longer to execute than well-structured ones, so it's important to understand some basic issues when developing algorithms.
- We begin with a brief overview of performance considerations on high-performance architectures (like your laptop).
- We also present a few concerns for communication in large-scale parallel computing applications, as this can frequently dictate algorithmic modifications.

Direct Solvers Review

- We begin with a brief overview of direct solvers, a.k.a., Gaussian Elimination (GE).
- These differ from iterative solvers in that they terminate in a finite number of steps. (Technically, conjugate gradient iteration also terminates in a finite number of steps—but we rarely need to take that many steps to have a converged solution.)
- We will see that direct solvers are advantageous for systems coming from lowdimensional PDEs in \mathbb{R}^d (i.e., d = 1), but generally not competitive for d > 2. For d = 2, the winning approach is largely determined by the condition number of the system matrix.
- Direct methods also form the basis for some preconditioning strategies known as ILU methods, which are based on incomplete LU factorizations.
- We'll start with GE for general (i.e., *dense*) matrices so that we internalize the central ideas.
- We'll then extend these to sparse systems that are the focus of this course.

Direct Solvers Outline

- Triangular solve example
- Gaussian elimination example
 - Partial pivoting
- Geometric interpretations of linear algebra
 - Row-based interpretation
 - Column-vector interpretation
- \bullet Implementations of LU factorization
 - General case
 - Banded-matrix case

Triangular Solves Example

- Upper- or lower-triangular systems are straightforward to solve.
- Consider the following upper-triangular system governing the unknown, $\underline{x} = [x_1 \ x_2 \ x_3]^T$.

$$1 \cdot x_{1} + 2 \cdot x_{2} + 3 \cdot x_{3} = 16$$

$$4 \cdot x_{2} + 5 \cdot x_{3} = 14$$

$$6 \cdot x_{3} = 12$$
(2)

- To solve this, we use the well-known *backward substitution* approach of working from the bottom equation (which is trivial) up to the first equation.
- From the bottom, we have

$$x_3 = \frac{12}{6} = 2. (3)$$

• Next up, we can find x_2 as

$$4 \cdot x_2 = 14 - 5 \cdot x_3 = 14 - 5 \cdot 2 = 4, \tag{4}$$

so $x_2 = 1$.

• Finally, from the first equation, we have:

$$1 \cdot x_1 = 16 - 3 \cdot x_3 - 2 \cdot x_2 = 16 - 3 \cdot 2 - 2 \cdot 1 = 8.$$
 (5)

• Note that we can permute the rows of this system without changing the answer:

$$6 \cdot x_3 = 12 4 \cdot x_2 + 5 \cdot x_3 = 14 1 \cdot x_1 + 2 \cdot x_2 + 3 \cdot x_3 = 16$$
(6)

• We can also permute the columns:

$$\begin{array}{rcl}
6 \cdot x_3 & = & 12 \\
5 \cdot x_3 & + & 4 \cdot x_2 & = & 14 \\
3 \cdot x_3 & + & 2 \cdot x_2 & + & 1 \cdot x_1 & = & 16
\end{array} \tag{7}$$

Here, nothing has changed, save for the positions on the page.

- The equations and, hence the solution, are the same. The solution process follows in precisely the same way as before.
- We conclude that solving a lower-triangular system is essentially the same as solving an upper-triangular system.

One starts with the trivial entry, computes that value and subtracts a multiple of it from the RHS for the next equation.

This process is repeated as each unknown $(x_3, x_2, \text{ etc.})$ becomes known.

A More General Example

- For more general systems, the convention is to effect a sequence of transformations such that the result is an equivalent *upper triangular system*.
- Because we work in finite-precision arithmetic, "equivalent" must be tempered by the expectation that there will be round-off errors.
- Good (i.e., *stable*) algorithms, however, will mitigate these round-off errors to the extent possible.
- In general, if the condition number of the system matrix is 10^k , we can expect to lose k digits of accuracy.
- For example, if we are working in FP64, we have 16 digits of accuracy in the representation of most numbers. If the condition number of the system matrix is 10⁵, we can expect only 11 digits of accuracy in the final result.
- Q: For the same system, what accuracy should we expect if working in
 - FP32?
 - FP16?

- The transformation of a general matrix to upper triangular form is known as *Gaussian Elimination* and it is equivalent to what is known as *LU* factorization.
- Equivalence-preserving operations used in Gaussian elimination include
 - row interchanges
 - column interchanges (relatively rare; used only for "full pivoting")
 - addition of a multiple of another row to a given row

Notice that we do not include "multiplication of a row by a constant" because, while valid for any nonzero constant, it is generally not needed for Gaussian elimination.

- We have already seen how row/column interchanges can transform a system from lower-triangular form to upper-triangular form and can understand that reversing that procedure would take us back to our targeted upper-triangular form.
- Let's now look at the row-addition process for a more general example.

• Consider the 3×3 system,

$$3 \cdot x_{1} + 9 \cdot x_{2} + 6 \cdot x_{3} = 15$$

$$2 \cdot x_{1} + 8 \cdot x_{2} + 6 \cdot x_{3} = 12$$

$$8 \cdot x_{1} + 2 \cdot x_{2} + 5 \cdot x_{3} = 18$$
(8)

- To convert this to *upper-triangular form*, we start with the following steps:
 - Leave the first equation unchanged.
 - Modify the second equation by subtracting a multiple of the first, in such a way that we **generate a zero in column 1 of the output.**

For example,

• Do the same with the third equation, i.e., subtract from it a multiple of the first equation that will yield a zero coefficient for the x_1 term in row 3:

$$\frac{-\frac{8}{3}}{\frac{3}{3}} \begin{bmatrix} 3 \cdot x_1 + 9 \cdot x_2 + 6 \cdot x_3 = 15 \end{bmatrix} \\
+ \begin{bmatrix} 8 \cdot x_1 + 2 \cdot x_2 + 5 \cdot x_3 = 18 \end{bmatrix} \\
\xrightarrow{} 0 \cdot x_1 - 22 \cdot x_2 - 11 \cdot x_3 = -22$$
(10)

• After the first round of Gaussian elimination, the system looks like

$$3 \cdot x_{1} + 9 \cdot x_{2} + 6 \cdot x_{3} = 15$$

$$2 \cdot x_{2} + 2 \cdot x_{3} = 2$$

$$- 22 \cdot x_{2} - 11 \cdot x_{3} = -22$$
(11)

- Notice that the row multipliers in (9) and (10) are respectively $\frac{2}{3}$ and $\frac{8}{3}$, which correspond to the ratio of the leading coefficients in rows 2 and 3 to the leading coefficient in row 1.
 - If the leading coefficient of **row 1** (here, the *pivot row*) is 0 we clearly have a problem.
 - Even if it is just relatively small, this can cause difficulties, because we are then adding a large multiple of row 1 to each of row 2 and 3 and the information in these rows can be lost because of round-off effects.

- The primary remedy for the small-pivot scenario is simply to **reorder the rows** so that row 1 has the largest leading coefficient (in absolute value) of all rows.
- Every row multiplier will then be of magnitude ≤ 1 and the original row information will dominate, under the assumption that the row coefficients are initially comparable in scale.
- For example, applying this idea to the preceding case, we would first swap rows 1 and 3,

$$8 \cdot x_{1} + 2 \cdot x_{2} + 5 \cdot x_{3} = 18$$

$$2 \cdot x_{1} + 8 \cdot x_{2} + 6 \cdot x_{3} = 12$$

$$3 \cdot x_{1} + 9 \cdot x_{2} + 6 \cdot x_{3} = 15$$
(12)

and follow this with the elimination steps for row 2,

and for row 3,

$$\begin{array}{rcrcrcrcrcrcrcrc}
-\frac{3}{8} \left[8 \cdot x_1 + 2 \cdot x_2 + 5 \cdot x_3 = 18 \right] \\
+ \left[3 \cdot x_1 + 9 \cdot x_2 + 6 \cdot x_3 = 15 \right] \\
\hline
\longrightarrow 0 \cdot x_1 + 8\frac{1}{4} \cdot x_2 + 4\frac{1}{8} \cdot x_3 = 8\frac{1}{8}
\end{array}$$
(14)

• Note that the row multipliers in (13) and (14) are now both < 1 in magnitude.

- This row-exchange idea can be performed at each round of Gaussian elimination and is referred to as *partial pivoting* or *row pivoting*.
- It is fast and provides stability in many cases. It is not needed, however, if the system matrix is *symmetric positive definite* (SPD).
- For some reason, there is a myth about the overhead associated with actually swapping rows, as opposed to simply keeping track of which row is used as the pivot-row.

For example, Wikipedia states,

Pivoting might be thought of as swapping or sorting rows or columns in a matrix, and thus it can be represented as multiplication by permutation matrices. However, algorithms **rarely** move the matrix elements because this would cost too much time; instead, they just keep track of the permutations.

• In fact, **fast vector implementations** seek *unit-stride addressing* and *minimal loop clutter* (i.e., branching), which can be realized most effectively by avoiding the indirect addressing associated with index-based row-swapping.

Indeed, LaPack's dgetf2.f explicitly row swaps, so that the active submatrix can be addressed in a *contiguous, unit-stride, fashion*.

- **Summary 1:** Explicitly row-swap within a processor.
- Summary 2: Do not row-swap between processors in distributed-memory (messagepassing) applications.

• Coming back to our (unpivoted) system after the first round of elimination, we have

$$3 \cdot x_{1} + 9 \cdot x_{2} + 6 \cdot x_{3} = 15$$

$$2 \cdot x_{2} + 2 \cdot x_{3} = 2$$

$$- 22 \cdot x_{2} - 11 \cdot x_{3} = -22$$
(15)

- To complete the process, we proceed with another round to generate a zero in column 2 of the last row.
 - Here, we leave rows 1 and 2 intact and update row 3 by subtracting a multiple of row 2 from it.
 - The update of row 3 looks like:

$+\frac{22}{2}$ [$2 \cdot x_2 + 2 \cdot x_3 = 2]$	$\longleftarrow \text{final row } 2$
+ [$-22 \cdot x_2 - 11 \cdot x_3 = -22$]	$\longleftarrow \mathbf{old} \ \mathbf{row} \ 3 \tag{16}$
\rightarrow	$0 \cdot x_2 + 11 \cdot x_3 = 0$	$\longleftarrow \text{new row } 3$

- Q: Could we update row 3 by substracting a multiple of row 1, instead of row 2??
- Note that here the row multiplier is $-\frac{22}{2}$, which is again > 1 in absolute value. Pivoting would have led to a row swap before the elimination step in which we generate a 0-coefficient for column 2, row 3.
- The final full system, in upper-triangular form, now reads

$$3 \cdot x_{1} + 9 \cdot x_{2} + 6 \cdot x_{3} = 15$$

$$2 \cdot x_{2} + 2 \cdot x_{3} = 2$$

$$11 \cdot x_{3} = 0$$
(17)

• Using backwards substitution we find,

$$\begin{array}{rcl}
x_1 &=& 2 \\
x_2 &=& 1 \\
x_3 &=& 0
\end{array} \tag{18}$$

Matrix Factorization

- It's clear from the above exercise that we of course do not need to carry the unknowns x_j in the manipulations, which is why solution of a linear system can be expressed as a sequence of factors.
- Written as a matrix-vector product, our preceding example would read:

$$\begin{bmatrix} 3 \cdot x_1 + 9 \cdot x_2 + 6 \cdot x_3 \\ 2 \cdot x_1 + 8 \cdot x_2 + 6 \cdot x_3 \\ 8 \cdot x_1 + 2 \cdot x_2 + 5 \cdot x_3 \end{bmatrix} = \begin{bmatrix} 3 & 9 & 6 \\ 2 & 8 & 6 \\ 8 & 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 12 \\ 18 \end{bmatrix}.$$
(19)

• In compact form, we write this equation as

$$A\underline{x} = \underline{b} \tag{20}$$

(21)

with

$$A := \begin{bmatrix} 3 & 9 & 6 \\ 2 & 8 & 6 \\ 8 & 2 & 5 \end{bmatrix}, \quad \underline{x} := \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \underline{b} := \begin{bmatrix} 15 \\ 12 \\ 18 \end{bmatrix}.$$
(22)

• We will often write a matrix as a collection of column vectors, e.g.,

$$A := [\underline{a}_1 \, \underline{a}_2 \, \underline{a}_3], \qquad (23)$$

with

$$\underline{a}_1 = \begin{bmatrix} 3\\2\\8 \end{bmatrix}, \quad \underline{a}_2 = \begin{bmatrix} 9\\8\\2 \end{bmatrix}, \quad \underline{a}_3 = \begin{bmatrix} 8\\2\\5 \end{bmatrix}.$$
(24)

- A key idea in linear algebra that is central to iterative methods is that *every matrix-vector product is a linear combination of the columns of that matrix.*
- Consider an $m \times n$ matrix, V. The matrix-vector product $V\underline{y}$ is

$$\underline{z} = V \underline{y} = \underline{v}_1 y_1 + \underline{v}_2 y_2 + \dots + \underline{v}_n y_n.$$

$$(25)$$

• Q: What can we say about the vector \underline{z} in the following expression?

$$\underline{z} = V(V^T A V)^{-1} V^T \underline{y}$$
(26)

A: We can say that \underline{z} lies in the *column space of* V, which is also known as the range of V, denoted as $\mathcal{R}(V)$.

That is, \underline{z} is a linear combination of the columns of V. Always.

• We explore the implications of this fact in through geometric interpretations of linear systems in the following examples.

The Geometry of Linear Equations¹

• Example, 2×2 system:

$$\begin{cases} 2x - y = 1 \\ x + y = 5 \end{cases} \iff \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

- Can look at this system by *rows* or *columns*.
- We will do both.

Row Form

• In the 2×2 system, each equation represents a line:

$$2x - y = 1 \qquad \text{line 1}$$
$$x + y = 5 \qquad \text{line 2}$$

• The intersection of the two lines gives the unique point (x, y) = (2, 3), which is the solution.

• We remark that the system is relatively *ill-conditioned* if the lines are close to being parallel, that is, if the smallest subtended angle is close to 0.

Column Form

- The second (and more important) geometry is column based.
- Here, we view the system of equations as *one vector equation*:

Column form
$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

• The problem is to find coefficients, x and y, such that the combination of vectors on the left equals the vector on the right.

• In this case, the system is *ill-conditioned* if the column vectors are nearly parallel.

If these vectors are separated by an angle θ , it's relatively easy to show that the condition number scales as $\kappa \sim \frac{2}{\theta}$ as $\theta \longrightarrow 0$.

Row Form: A Case with n=3.

2u + v + w = 5Three planes: 4u - 6v = -2-2u + 7v + 2w = 9

- Each equation (row) defines a plane in \mathbb{R}^3 .
- The first plane is 2u + v + w = 5 and it contains points $(\frac{5}{2}, 0, 0)$ and (0, 5, 0) and (0, 0, 5).
- It is determined by three points, provided they do not lie on a line.
- Changing 5 to 10 would shift the plane to be parallel this one, with points (5,0,0) and (0,10,0) and (0,0,10).

Row Form: A Case with n=3, cont'd.

- The second plane is 4u 6v = -2.
- It is vertical because it can take on any w value.
- The intersection of this plane with the first is a *line*.
- The third plane, -2u + 7v + 2w = 9 intersects this line at a point, (u, v, w) = (1, 1, 2), which is the solution.
- In n dimensions, the solution is the intersection point of n hyperplanes, each of dimension n-1.
- A bit confusing.

Column Vectors and Linear Combinations

• The preceding system in \mathbb{R}^3 can be viewed as the vector equation

$$u \begin{bmatrix} 2\\4\\-2 \end{bmatrix} + v \begin{bmatrix} 1\\-6\\7 \end{bmatrix} + w \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 5\\-2\\9 \end{bmatrix} = \underline{b}.$$

- Our task is to find the multipliers, u, v, and w.
- The vector \underline{b} is identified with the point (5,-2,9).
- We can view \underline{b} as a list of numbers, a point, or an arrow.
- For n > 3, it's probably best to view it as a list of numbers.

Vector Addition Example

The Singular Case: Row Picture

• No solution.

The Singular Case: Row Picture

• Infinite number of solutions.

The Singular Case: Column Picture

• No solution.

The Singular Case: Column Picture

• Infinite number of solutions. (\underline{b} coincident with \underline{a}_1 and \underline{a}_2 .)

Singular Case: Row Picture with n=3

Singular Case: Column Picture with n=3

• In this case, the three columns of the system matrix lie in the same plane.

Example:
$$u \begin{bmatrix} 1\\2\\3 \end{bmatrix} + v \begin{bmatrix} 4\\5\\6 \end{bmatrix} + w \begin{bmatrix} 7\\8\\9 \end{bmatrix} = \underline{b}.$$

- On the left, \underline{b} is not in the plane \longrightarrow no solution.
- On the right, \underline{b} is in the plane \longrightarrow an inifinite number of solutions.
- Our system is *solvable* (we can get to any point in \mathbb{R}^3) for **any** <u>b</u> if the three columns are *linearly independent*.

Matrix Form and Matrix-Vector Products.

• We start with the familiar (row) form

$$2u + v + w = 5$$
$$4u - 6v = -2$$
$$-2u + 7v + 2w = 9$$

• In matrix form, this is

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}, \text{ or } A\underline{u} = \underline{b}.$$

• Of course, this must equal our column form,

$$u \begin{bmatrix} 2\\4\\-2 \end{bmatrix} + v \begin{bmatrix} 1\\-6\\7 \end{bmatrix} + w \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 5\\-2\\9 \end{bmatrix} = \underline{b}.$$

Matrix Form and Matrix-Vector Products, 2.

• So, if A is the matrix with columns \underline{a}_1 , \underline{a}_2 , and \underline{a}_3 ,

$$A := \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} =: \begin{bmatrix} \underline{a}_1 & \underline{a}_2 & \underline{a}_3 \\ \end{bmatrix}, \quad \text{and} \quad \underline{u} := \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

• Then

$$A\underline{u} = u\underline{a}_1 + v\underline{a}_2 + w\underline{a}_3$$

Matrix Form and Matrix-Vector Products, 3.

• In general, if \underline{x} is the *n*-vector

$$\underline{x} := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

and A is an $m \times n$ matrix, then

$$A\underline{x} = x_1 \underline{a}_1 + x_2 \underline{a}_2 + \cdots + x_n \underline{a}_n$$

= linear combination of the columns of A.

• Always.

Sigma Notation

• Let A be an $m \times n$ matrix,

$$A = \begin{bmatrix} \underline{a}_1 \cdots \underline{a}_j \cdots \underline{a}_n \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} \cdots a_{1j} \cdots a_{1n} \\ \vdots & \vdots & \vdots \\ a_{i1} \cdots & a_{ij} \cdots & a_{in} \\ \vdots & \vdots & \vdots \\ a_{m1} \cdots & a_{mj} \cdots & a_{mn} \end{bmatrix}.$$

• Then

$$\underline{w} = A\underline{x} = \sum_{j=1}^n x_j \underline{a}_j = \sum_{j=1}^n \underline{a}_j x_j.$$

• Components of the output,

$$w_i = (A\underline{x})_i = \sum_{j=1}^n a_{ij} x_j.$$

Matrix Multiplication

If
$$B = \begin{bmatrix} \underline{b}_1 & \underline{b}_2 \end{bmatrix}$$
,
Then $C = AB = \begin{bmatrix} A\underline{b}_1 & A\underline{b}_2 \end{bmatrix}$.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Quiz Questions

- 1. Suppose A and B are $n \times n$ matrices.
 - How many floating point operations (flops) are required to compute C = AB?
 - What is the number of memory accesses?

2. Suppose $D := \text{diag}(d_{ii})$ is a diagonal matrix of the form

$$D = \begin{bmatrix} d_{11} & & & \\ & d_{22} & & \\ & & \ddots & \\ & & & d_{nn} \end{bmatrix},$$

and C := DA.

How do the entries of C relate to those of A?

3. For the same D, how do the entries of C = AD relate to those of A?

Ans. for Q2: Think of a matrix-matrix product as a sequence of matrix vector products, one each for $\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_n$. That is $DA = [D\underline{a}_1 D\underline{a}_2 \cdots D\underline{a}_n]$.

Matrix-Vector Products, Example.

If
$$\underline{\hat{x}} := V (V^T A V)^{-1} V^T \underline{b}$$

= $V \underline{y}$.

Then $\underline{\hat{x}} =$ linear combination of the columns of V.

- $\underline{\hat{x}}$ lies in the *column space* of V.
- $\underline{\hat{x}}$ lies in the *range* of V.
- $\underline{\hat{x}} \in \operatorname{span}(V)$

Some Special Matrix-Vector Products, 1/2.

- Suppose $V = \underline{v}$ and $W = \underline{w}$ are $n \times 1$ matrices (i.e., vectors).
- Then

$$C = V^T W = \underline{v}^T \underline{w} = \sum_{j=1}^n v_j w_j = c$$

is a 1×1 matrix (i.e., a scalar).

• We refer to $\underline{v}^T \underline{w}$ as the "dot" or *inner* product of \underline{v} and \underline{w} .

Some Special Matrix-Vector Products, 2/2.

- Suppose $V = \underline{v}$ and $W = \underline{w}$ are $n \times 1$ matrices (i.e., vectors).
- Then

$$C = VW^{T} = \underline{v} \underline{w}^{T} = \underline{v} [w_{1} \ w_{2} \ \cdots \ w_{n}]$$
$$= \left[\underline{v}w_{1} \ \underline{v}w_{2} \ \cdots \ \underline{v}w_{n} \right]$$

is an $n \times n$ matrix, with each column a multiple of \underline{v} .

- We refer to $\underline{v} \underline{w}^T$ as the *outer* product of \underline{v} and \underline{w} .
- It is a matrix of rank 1 and not invertible (unless n = 1).
 - every column is a multiple of \underline{v}
 - every row is a multiple of \underline{w}^T
- **Q:** Suppose $C = \underline{v} \underline{w}^T$ is an $n \times n$ matrix.

What subset of \mathbb{R}^n is reachable by the matrix-vector product $\underline{z} = C\underline{y}$?

• A: ?

Code for the general case, without pivoting:

As written, in *row* form:

Better memory access (much faster):

for $k = 1 : \min(m, n)$ for $k = 1 : \min(m, n)$ $piv = a_{kk}$ $piv = a_{kk}$ for i = k + 1 : mfor i = k + 1 : m% put multiplier column % in lower part of A $a_{ik} = a_{ik}/piv$ $a_{ik} = a_{ik}/piv$ for j = k + 1 : nend $\tilde{A}^{k+1} = \tilde{A}^{k+1} - c_k r_k^T$ $a_{ij} = a_{ij} - a_{ik} * a_{kj}$ for j = k + 1 : nfor i = k + 1 : mend end $a_{ij} = a_{ij} - a_{ik} * a_{kj}$ end end end

end

- Remarkably, L is now resident in the overwritten lower part of A.
- To retrieve L and U, we use the following:

```
\begin{split} l &= \min(m,n); \quad L = \operatorname{zeros}(\mathbf{m},\mathbf{l}); \quad U = \operatorname{zeros}(\mathbf{l},\mathbf{n}); \\ \text{for } k &= 1:l \\ L(k:end,k) &= A(k:end,k); \quad L(k,k) = 1; \\ U(k,k:end) &= A(k,k:end); \\ \text{end} \end{split}
```

Solution of Upper Triangular Systems

As written:

Better memory access (*faster*):

for $i = n : 1$	for $j = n : 1$
$x_i = b_i$	if $u_{jj} = 0$, stop - matrix is singular.
for $j = i + 1 : n$	$x_j \;=\; b_j/u_{jj}$
$x_i ~=~ x_i ~-~ u_{ij} x_j$	for $i = 1 : j - 1$
end	$b_i \ = \ b_i \ - \ u_{ij} x_j$
$x_i = x_i/u_{ii}$	end
end	end

Solution of Lower Triangular Systems

$$\begin{cases} l_{11} & & \\ l_{21} & l_{22} & & \\ l_{31} & l_{32} & l_{33} & & \\ \vdots & & \ddots & & \\ \vdots & & \ddots & & \\ l_{n1} & l_{n2} & l_{n3} & \cdots & \cdots & l_{nn} \end{cases} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$
for $i = 1, 2, \dots, n$: $x_i = \frac{1}{l_{ii}} \left(b_i - \sum_{j=1}^{i-1} l_{ij} x_j \right).$

As written:

Better memory access (*faster*):

for $i = 1: n$	for $j = 1: n$
$x_i = b_i$	if $l_{jj} = 0$, stop - matrix is singular.
for $j = 1 : i - 1$	$x_j \;=\; b_j/l_{jj}$
$x_i ~=~ x_i ~-~ l_{ij} x_j$	for $i = j + 1 : n$
end	$b_i \ = \ b_i \ - \ l_{ij} x_j$
$x_i \;=\; x_i/l_{ii}$	end
end	end

Solution of Upper Banded Systems

Suppose U is a banded matrix: $u_{ij} = 0, j > i + \beta$.

For example, $\beta = 2$:

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & & & \\ & u_{22} & u_{23} & u_{14} & & \\ & & \ddots & \ddots & & \\ & & u_{33} & \ddots & \ddots & \\ & & & \ddots & u_{n-2,n} \\ & & & \ddots & u_{n-1,n} \\ & & & & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

for
$$i = n, n - 1, ..., 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^{\min(i+\beta,n)} u_{ij} x_j \right).$

for
$$i = n, n - 1, \dots, 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^{\min(i+\beta,n)} u_{ij} x_j \right).$

As written:

Better memory access (*faster*):

for $i = n : 1$	for $j = n : 1$
$x_i = b_i, j_{\max} := \min(j + \beta, n)$	if $u_{jj} = 0$, stop - matrix is singular.
for $j = i + 1 : j_{\text{max}}$	$x_j = b_j/u_{jj}, \ i_{\min} := \max(1, j - \beta)$
$x_i ~=~ x_i ~-~ u_{ij} x_j$	for $i = i_{\min} : j - 1$
end	$b_i ~=~ b_i ~-~ u_{ij} x_j$
$x_i = x_i/u_{ii}$	end
end	end

- In this case, there are $\sim 2\beta n$ operations and $\sim \beta n$ memory references (one for each u_{ij}).
- Often $\beta \ll n$, which means that the upper-banded system is *much* faster to solve than the full upper triangular system.
- The same savings applies to the lower-banded case.

• Example:

Γ1	2	3		-		x_1		Γ0
	4	4	6	1		x_2		4
	8	8	9	2		x_3	=	4
	6	1	3	3		x_4		4
L	4	2	8	4		x_5		4

- First column is already in upper triangular form.
- Eliminate second column:

row_3	←	row_3 –	$\frac{8}{4} \times row_2$	[1	2	3		-	$\begin{bmatrix} x_1 \end{bmatrix}$		[0]
row_4	<i>←</i>	row_4 –	$\frac{6}{4} \times \text{row}_2$		4	$4 \\ 0$	6 - 3	1 0	$egin{array}{c} x_2 \ x_3 \end{array}$	=	$\begin{array}{c} 4\\ -4 \end{array}$
row_5	<i>~</i>	row_5 –	$\frac{4}{4} \times \text{row}_2$			$-5 \\ -2$	$-6 \\ 2$	$\frac{3}{2}$	$\begin{bmatrix} x_4 \\ x_5 \end{bmatrix}$		$\begin{bmatrix} -2\\ 0 \end{bmatrix}$

- $a_{22} = 4$ is the *pivot*
- row_2 is the *pivot row*
- $l_{32} = \frac{8}{4}, l_{42} = \frac{6}{4}, l_{52} = \frac{4}{4}$, is the multiplier column.

Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store \underline{b} in A(:, n+1):

1	2	3			0		Γ1	2	3			ך 0	
	4	4	6	1	4			4	4	6	1	4	
	8	8	9	2	4	 \rightarrow			0	-3	0	-4	
	6	1	3	3	4				-5	-6	$\frac{3}{2}$	-2	
_	4	2	8	4	4		L		-2	2	3		

This Case.

General Case.

pivot = 4 =
$$a_{kk}$$
 when zeroing the kth column.
pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ = $\underline{r}_k^T = a_{kj}, j = k + 1, \dots, n \begin{bmatrix} + b_k \end{bmatrix}$
multiplier column = $\frac{1}{4} \begin{bmatrix} 8 \\ 6 \\ 4 \end{bmatrix}$ = $\underline{c}_k = \frac{a_{ik}}{a_{kk}}, i = k + 1, \dots, n$
= $\begin{bmatrix} 2 \\ \frac{3}{2} \\ 1 \end{bmatrix}$

• We now move to eliminate the next column, k = 3.

$$\begin{bmatrix} 1 & 2 & 3 & & & 0 \\ 4 & 4 & 6 & 1 & 4 \\ & 0 & -3 & 0 & -4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & -2 & 2 & 3 & 0 \end{bmatrix}$$

- Here, we have diffiulty because the nominal pivot, a_{33} is zero.
- The remedy is to exchange rows with one of the remaining two, since the order of the equations is immaterial.
- For numerical stability, we choose the row that maximizes $|a_{ik}|$.
- This choice ensures that all entries in the multiplier column are less than one in modulus.

- Next Step: k = k + 1
- After switching rows, we have

$$\begin{bmatrix} 1 & 2 & 3 & & 0 \\ 4 & 4 & 6 & 1 & 4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & 0 & -3 & 0 & -4 \\ & -2 & 2 & 3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & & 0 \\ 4 & 4 & 6 & 1 & 4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & 0 & -3 & 0 & -4 \\ & 0 & 4\frac{2}{5} & 2\frac{2}{5} & \frac{4}{5} \end{bmatrix}$$

pivot = -5

pivot row =
$$\begin{bmatrix} -6 & \frac{3}{2} & | & -2 \end{bmatrix}$$

multiplier column = $\frac{1}{-5} \begin{bmatrix} 0 \\ -2 \end{bmatrix}$

Code for the general case, without pivoting:

As derived, in *row* form:

Better memory access (much faster):

for $k = 1 : \min(m, n)$ for $k = 1 : \min(m, n)$ $piv = a_{kk}$ $piv = a_{kk}$ for i = k + 1 : mfor i = k + 1 : m % put multiplier column $a_{ik} = a_{ik}/piv$ % in lower part of A $a_{ik} = a_{ik}/piv$ for j = k + 1 : nend for j = k + 1 : n % $\tilde{A}^{k+1} = \tilde{A}^{k+1} - c_k r_k^T$ $a_{ij} = a_{ij} - a_{ik} * a_{kj}$ for i = k + 1 : mend end $a_{ij} = a_{ij} - a_{ik} * a_{kj}$ end end end end

- Remarkably, L is now resident in the overwritten lower part of A.
- To retrieve L and U, we use the following:

```
\begin{split} l &= \min(m,n); \quad L = \operatorname{zeros}(\mathbf{m},\mathbf{l}); \quad U = \operatorname{zeros}(\mathbf{l},\mathbf{n}); \\ \text{for } k &= 1:l \\ L(k:end,k) &= A(k:end,k); \quad L(k,k) = 1; \\ U(k,k:end) &= A(k,k:end); \\ \text{end} \end{split}
```

Illustration of Basic Update Step:

- A_k is the reduced form of A at the start of step k.
- \tilde{A}^k is the active submatrix A^k starting at row k, col k.
- After identifying the

pivot, a_{kk} pivot row, $\underline{r}_k^T = a_{k:}$, and multiplier column, $\underline{c}_k = a_{:k}/a_{kk}$,

the rank-one update step reads:

$$\tilde{A}^{k+1} = \tilde{A}^{k+1} - \underline{c}_k \, \underline{r}_k^T.$$

- The memory footprint of each successive submatrix is $(n-1)^2$, $(n-2)^2$, ... 1.
- This matrix must be pulled into cache n-1 times.
- The total number of memory references (of *non-cached* data) is $\approx \frac{1}{3}n^3$, and the total work $\approx \frac{2}{3}n^3$ ops (one "+" and "*" for each submatrix entry).
- Recall that non-cached memory accesses slow ($\approx 20 \times$) compared to an fma.
- This observation suggests the idea of **block factorizations** that exploit **BLAS3** matrix-matrix products.
- This is the essential difference between LinPack and LaPack, with the latter being about $20 \times$ faster.

Illustration of Block-Update:

- Here, A_{kk} is a $b \times b$ block, where $b \approx 64$ is the block size.
- In this case, the update step is

$$\tilde{A}^{k+1} = \tilde{A}^{k+1} - C_k A_{kk}^{-1} R_k^T.$$

• Since $A_{kk}^{-1} = (L_{kk} U_{kk})^{-1} = U_{kk}^{-1} L_{kk}^{-1}$, we can rewrite the update step as

$$R_k^T = L_{kk}^{-1} R_k^T$$

$$C_k = C_k U_{kk}^{-1}$$

$$\tilde{A}^{k+1} = \tilde{A}^{k+1} - C_k R_k^T$$

• The advantage of the block strategy is that we reduce by a factor of b the number of times that \tilde{A}^{k+1} is dragged into cache from main memory and that the principal work, computation of $C_k R_k^T$, is cast as a fast matrix-matrix product.

Matlab Code for LU, with and without Blocking:

```
function [L,U]=blu(A,b);
function [L,U]=plu(A);
                                                    % Unpivoted Block-LU factorization
                                                    % Blocksize = b
% Unpivoted LU factorization
                                                    m=size(A,1);
m=size(A,1);
                                                    n=size(A,2);
n=size(A,2);
                                                    K=min(m,n);
K=min(m,n);
                                                    U=A;
U=A(1:K,:);
                                                    L=0*A;
L=zeros(m,K);
                                                    for k=1:b:K; l=k+b-1; l=min(l,K);
for k=1:K;
                                                       P=U(k:1,k:1);
                                                                        [PL,PU] = plu(P); %% pivot
  piv=U(k,k);
                         %% pivot
                                                       R=U(k:1,k+b:end); R=PL\R;
                                                                                            %% pivot row
  row=U(k,k:end)';
                         %% pivot row
                                                       C=U(k+b:end,k:1); C=C/PU;
                                                                                           %% multiplier column
  col=U(k+1:end,k)/piv; %% multiplier column
                                                       U(k+b:end,k+b:end) = U(k+b:end,k+b:end) - C*R;
  U(k+1:end,k:end) = U(k+1:end,k:end)-col*row';
                                                       U(k:1,k+b:end) = R; U(k:1,k:1) = PU; U(k+b:end,k:1)=0;
  L(k+1:end,k)
                   = col;
                                                       L(k+b:end,k:1) = C; L(k:1,k:1) = PL;
  L(k,k)
                   = 1;
```

end;

```
end;
```


Figure 1: Time and GFLOPS for unblocked rank-1-based LU factorization (red) and blocked LU factorization with blockize b = 64 (blue) vs. matrix size, n. For large n, there is a $40 \times$ difference in performance between Block-LU and Rank-1 LU. The default Octave LU gains another factor of 5 for large n, and a factor of 70 for n < 100. The results show that the dense-matrix factor times for n = 8192 are about 6 seconds for Octave when using multiple cores on an M1-based Macbook Pro.

- Importantly, the number of operations is $b(n-k)^2$ fma's for the work-intensive matrix-matrix products, while the number of memory references is only $(n-k)^2$, which yields a *b*-fold increase in *computational intensity* (the ratio of flops to bytes).
- \bullet For this reason, LU factorization of large matrices can often realize close to the theoretical peak performance of a machine.

(Some argue that this so-called Linpack performance number, which is used to score the machines in the Top 500 list, is inflated and artificial. Personally, I view it as an existence proof. The counter-argument is that vendors focus solely on the Linpack benchmark to the detriment of real applications.)

Iterative Solvers (Matrix Norm Example)

- Solve $A\underline{x} = \underline{b}$.
- Consider the following *fixed-point iteration*:
 - Initial guess: $\underline{x}_0 = 0$ $-\underline{x}_{k+1} = \underline{x}_k + (\underline{b} - A\underline{x}_k), \ k = 0, 1, \dots, k_{\max}.$

• Cost:

- $-[A\underline{x}_k] = 2n^2$ if A is **full**
- Total cost ~ $2n^2 \times$ number of iterations.
- $-[A\underline{x}_k] = O(n)$ if A is **sparse** (number of nonzeros per row < c, for c a constant independent of n)
- Total cost ~ O(n) × number of iterations.
- How many iterations for $||\underline{e}_k|| := ||\underline{x} \underline{x}_k|| \le tol (= 10^{-8}, say)?$

• Example:

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{10} \\ \\ \frac{1}{10} & \frac{1}{2} \end{bmatrix}, \qquad \underline{b} = \begin{bmatrix} \frac{4}{5} \\ \\ \frac{8}{5} \end{bmatrix},$$

• Iteration:

$$\underline{x}_1 = \mathbf{0} + \underline{b} - A\mathbf{0}$$
$$\underline{x}_2 = \underline{x}_1 + \underline{b} - A\underline{x}_1$$
$$\vdots$$
$$\underline{x}_{k+1} = \underline{x}_k + \underline{b} - A\underline{x}_k.$$

• matlab demo: *iter_demo_22a.m*

$$\underline{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

For each iteration k,

k	xk	ek
0	0.0000	1.0000
	0.0000	3.0000
1	0.8000	0.2000
	1.6000	1.4000
2	1.0400	-0.0400
	2.3200	0.6800
3	1.0880	-0.0880
	2.6560	0.3440
4	1.0784	-0.0784
	2.8192	0.1808
5	1.0573	-0.0573
	2.9018	0.0982
6	1.0385	-0.0385
	2.9452	0.0548
7	1.0247	-0.0247
	2.9687	0.0313
8	1.0155	-0.0155
	2.9819	0.0181

9	1.0096	-0.0096
	2.9894	0.0106

Note on Row Scaling / Permutation

 $D\underline{v} = \text{scale rows of } \underline{v}$ $P\underline{v} = \text{permute rows of } \underline{v}$ $DA = [D\underline{a}_1 D\underline{a}_2 \cdots D\underline{a}_n] = \text{scale rows of } A$ $PA = [P\underline{a}_1 P\underline{a}_2 \cdots P\underline{a}_n] = \text{permute rows of } A$ $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 4 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$

Note on Column Scaling / Permutation

$$AD = [d_1\underline{a}_1 \, d_2\underline{a}_2 \, \cdots \, d_n\underline{a}_n] = \text{ scale columns of } A$$
$$AP = [\underline{a}_{p_1} \, \underline{a}_{p_2} \, \cdots \, \underline{a}_{p_n}] = \text{ permute columns of } A$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 3 \\ 4 & 2 & 3 \\ 4 & 2 & 3 \end{bmatrix}$$

System Modification by Permutations

$$P A \underline{x} = P \underline{b}$$
 Row Permutation
 $\longrightarrow A' \underline{x} = \underline{b}'$
 $A P P^T \underline{x} = \underline{b}$ Column Permutation
 $\longrightarrow A' \underline{x}' = \underline{b}$

System Modification by Permutations

$$\underbrace{PA}_{A'} \underline{x} = P \underline{b} = \underline{b}' \qquad \text{Row Permutation}$$

$$\underbrace{AP}_{A'} \underbrace{P^T \underline{x}}_{\underline{x}'} = \underline{b} \qquad \text{Column Permutation}$$

Gaussian Elimination as a Sequence of Matrix-Matrix Products

$$A^{(0)} := A$$

$$A^{(1)} := M_1 A^{(0)}$$

$$A^{(k)} := M_k A^{(k-1)} = M_k \cdots M_1 A$$

$$\vdots$$

$$A^{(n)} := U \text{ upper triangular}$$

$$= L^{-1} A \iff LU = A$$

- \bullet LU factorization and Gaussian elimination are equivalent.
- We view the solution process for solving $A\underline{x} = \underline{b}$ in two steps:
 - Factorization: $A \longrightarrow LU$
 - Solve: $L \underline{y} = \underline{b}$, followed by

$$U\underline{x} = \underline{y}.$$