
1 Iterative and Multigrid Solvers

• We are concerned with solution of the n× n system,

Ax = b, (1)

where we should think of A as being sparse (i.e., it has O(n) nonzero entries) and n
as being large (e.g., 104–1014).

• Ultimately, computational scientists (not developers) are generally interested in
methods that are the fastest possible for their given application, so we will also
review a variety of direct methods before delving into iterative methods, which are
the topic of this course.

• Q: What is the complexity (i.e., cost) for solving (1) when A is tridiagonal?

1. Do you know any systems where A is tridiagonal?

2. How many nonzeros in A?

3. How many nonzeros in A−1?

4. How many nonzeros in the LU factors, A = LU?

5. How many nonzeros in the inverse LU factors, L−1, U−1?

6. Suppose you reorder the equation numbering; do these answers change?



2 Vector/Parallel Performance

• Time-to-solution is governed not only by the number of nonzeros in the relevant
system matrices, but also by the number of operations and the order in which values
are retrived by memory.

• Poorly-structured algorithms can easily take a factor of 10 longer to execute than
well-structured ones, so it’s important to understand some basic issues when devel-
oping algorithms.

• We begin with a brief overview of performance considerations on high-performance
architectures (like your laptop).

• We also present a few concerns for communication in large-scale parallel computing
applications, as this can frequently dictate algorithmic modifications.



Direct Solvers Review

• We begin with a brief overview of direct solvers, a.k.a., Gaussian Elimination (GE).

• These differ from iterative solvers in that they terminate in a finite number of
steps. (Technically, conjugate gradient iteration also terminates in a finite number
of steps—but we rarely need to take that many steps to have a converged solution.)

• We will see that direct solvers are advantageous for systems coming from low-
dimensional PDEs in lRd (i.e., d = 1), but generally not competitive for d > 2.
For d = 2, the winning approach is largely determined by the condition number of
the system matrix.

• Direct methods also form the basis for some preconditioning strategies known as ILU
methods, which are based on incomplete LU factorizations.

• We’ll start with GE for general (i.e., dense) matrices so that we internalize the cen-
tral ideas.

• We’ll then extend these to sparse systems that are the focus of this course.



Direct Solvers Outline

• Triangular solve example

• Gaussian elimination example

– Partial pivoting

• Geometric interpretations of linear algebra

– Row-based interpretation

– Column-vector interpretation

• Implementations of LU factorization

– General case

– Banded-matrix case



Triangular Solves Example

• Upper- or lower-triangular systems are straightforward to solve.

• Consider the following upper-triangular system governing the unknown, x = [x1 x2 x3]
T .

1 · x1 + 2 · x2 + 3 · x3 = 16

4 · x2 + 5 · x3 = 14

6 · x3 = 12

(2)

• To solve this, we use the well-known backward substitution approach of working from
the bottom equation (which is trivial) up to the first equation.

• From the bottom, we have

x3 = 12/6 = 2 . (3)

• Next up, we can find x2 as

4 · x2 = 14 − 5 · x3 = 14− 5 · 2 = 4, (4)

so x2 = 1.

• Finally, from the first equation, we have:

1 · x1 = 16 − 3 · x3 − 2 · x2 = 16 − 3 · 2 − 2 · 1 = 8. (5)



• Note that we can permute the rows of this system without changing the answer:

6 · x3 = 12

4 · x2 + 5 · x3 = 14

1 · x1 + 2 · x2 + 3 · x3 = 16

(6)

• We can also permute the columns:

6 · x3 = 12

5 · x3 + 4 · x2 = 14

3 · x3 + 2 · x2 + 1 · x1 = 16

(7)

Here, nothing has changed, save for the positions on the page.

• The equations and, hence the solution, are the same.
The solution process follows in precisely the same way as before.

• We conclude that solving a lower-triangular system is essentially the same as solving
an upper-triangular system.

One starts with the trivial entry, computes that value and subtracts a multiple of it
from the RHS for the next equation.

This process is repeated as each unknown (x3, x2, etc.) becomes known.



A More General Example

• For more general systems, the convention is to effect a sequence of transformations
such that the result is an equivalent upper triangular system.

• Because we work in finite-precision arithmetic, “equivalent” must be tempered by
the expectation that there will be round-off errors.

• Good (i.e., stable) algorithms, however, will mitigate these round-off errors to the
extent possible.

• In general, if the condition number of the system matrix is 10k, we can expect to
lose k digits of accuracy.

• For example, if we are working in FP64, we have 16 digits of accuracy in the repre-
sentation of most numbers. If the condition number of the system matrix is 105, we
can expect only 11 digits of accuracy in the final result.

• Q: For the same system, what accuracy should we expect if working in

• FP32?

• FP16?



• The transformation of a general matrix to upper triangular form is known as Gaus-
sian Elimination and it is equivalent to what is known as LU factorization.

• Equivalence-preserving operations used in Gaussian elimination include

• row interchanges

• column interchanges (relatively rare; used only for “full pivoting”)

• addition of a multiple of another row to a given row

Notice that we do not include “multiplication of a row by a constant” because, while
valid for any nonzero constant, it is generally not needed for Gaussian elimination.

• We have already seen how row/column interchanges can transform a system from
lower-triangular form to upper-triangular form and can understand that reversing
that procedure would take us back to our targeted upper-triangular form.

• Let’s now look at the row-addition process for a more general example.



• Consider the 3×3 system,

3 · x1 + 9 · x2 + 6 · x3 = 15

2 · x1 + 8 · x2 + 6 · x3 = 12

8 · x1 + 2 · x2 + 5 · x3 = 18

(8)

• To convert this to upper-triangular form, we start with the following steps:

• Leave the first equation unchanged.

• Modify the second equation by subtracting a multiple of the first, in such a way
that we generate a zero in column 1 of the output.

For example,

−2
3 [ 3 · x1 + 9 · x2 + 6 · x3 = 15 ]

+ [ 2 · x1 + 8 · x2 + 6 · x3 = 12 ]

−→ 0 · x1 + 2 · x2 + 2 · x3 = 2

(9)

• Do the same with the third equation, i.e., subtract from it a multiple of the first
equation that will yield a zero coefficient for the x1 term in row 3:

−8
3 [ 3 · x1 + 9 · x2 + 6 · x3 = 15 ]

+ [ 8 · x1 + 2 · x2 + 5 · x3 = 18 ]

−→ 0 · x1 − 22 · x2 − 11 · x3 = −22

(10)

• After the first round of Gaussian elimination, the system looks like

3 · x1 + 9 · x2 + 6 · x3 = 15

2 · x2 + 2 · x3 = 2

− 22 · x2 − 11 · x3 = −22

(11)

• Notice that the row multipliers in (9) and (10) are respectively 2
3 and 8

3 , which
correspond to the ratio of the leading coefficients in rows 2 and 3 to the leading
coefficient in row 1.

• If the leading coefficient of row 1 (here, the pivot row) is 0 we clearly have a
problem.

• Even if it is just relatively small, this can cause difficulties, because we are then
adding a large multiple of row 1 to each of row 2 and 3 and the information in
these rows can be lost because of round-off effects.



• The primary remedy for the small-pivot scenario is simply to reorder the rows so
that row 1 has the largest leading coefficient (in absolute value) of all rows.

• Every row multiplier will then be of magnitude ≤ 1 and the original row in-
formation will dominate, under the assumption that the row coefficients are initially
comparable in scale.

• For example, applying this idea to the preceding case, we would first swap rows 1
and 3,

8 · x1 + 2 · x2 + 5 · x3 = 18

2 · x1 + 8 · x2 + 6 · x3 = 12

3 · x1 + 9 · x2 + 6 · x3 = 15

(12)

and follow this with the elimination steps for row 2,

−2
8 [ 8 · x1 + 2 · x2 + 5 · x3 = 18 ]

+ [ 2 · x1 + 8 · x2 + 6 · x3 = 12 ]

−→ 0 · x1 + 71
2 · x2 + 43

4 · x3 = 71
2

(13)

and for row 3,

−3
8 [ 8 · x1 + 2 · x2 + 5 · x3 = 18 ]
+ [ 3 · x1 + 9 · x2 + 6 · x3 = 15 ]

−→ 0 · x1 + 81
4 · x2 + 41

8 · x3 = 81
8

(14)

• Note that the row multipliers in (13) and (14) are now both < 1 in magnitude.



• This row-exchange idea can be performed at each round of Gaussian elimination and
is referred to as partial pivoting or row pivoting.

• It is fast and provides stability in many cases. It is not needed, however, if the
system matrix is symmetric positive definite (SPD).

• For some reason, there is a myth about the overhead associated with actually swap-
ping rows, as opposed to simply keeping track of which row is used as the pivot-row.

For example, Wikipedia states,

Pivoting might be thought of as swapping or sorting rows or columns in a ma-
trix, and thus it can be represented as multiplication by permutation matrices.
However, algorithms rarely move the matrix elements because this would cost
too much time; instead, they just keep track of the permutations.

• In fact, fast vector implementations seek unit-stride addressing and minimal
loop clutter (i.e., branching), which can be realized most effectively by avoiding the
indirect addressing associated with index-based row-swapping.

Indeed, LaPack’s dgetf2.f explicitly row swaps, so that the active submatrix
can be addressed in a contiguous, unit-stride, fashion.

• Summary 1: Explicitly row-swap within a processor.

• Summary 2: Do not row-swap between processors in distributed-memory (message-
passing) applications.



• Coming back to our (unpivoted) system after the first round of elimination, we have

3 · x1 + 9 · x2 + 6 · x3 = 15

2 · x2 + 2 · x3 = 2

− 22 · x2 − 11 · x3 = −22

(15)

• To complete the process, we proceed with another round to generate a zero in col-
umn 2 of the last row.

• Here, we leave rows 1 and 2 intact and update row 3 by subtracting a multiple of
row 2 from it.

• The update of row 3 looks like:

+22
2 [ 2 · x2 + 2 · x3 = 2 ]

+ [ − 22 · x2 − 11 · x3 = −22 ]

−→ 0 · x2 + 11 · x3 = 0

←− final row 2

←− old row 3

←− new row 3

(16)

• Q: Could we update row 3 by substracting a multiple of row 1, instead of row 2??

• Note that here the row multiplier is −22
2 , which is again > 1 in absolute value.

Pivoting would have led to a row swap before the elimination step in which we
generate a 0-coefficient for column 2, row 3.

• The final full system, in upper-triangular form, now reads

3 · x1 + 9 · x2 + 6 · x3 = 15

2 · x2 + 2 · x3 = 2

11 · x3 = 0

(17)

• Using backwards substitution we find,

x1 = 2
x2 = 1
x3 = 0

(18)



Matrix Factorization

• It’s clear from the above exercise that we of course do not need to carry the unknowns
xj in the manipulations, which is why solution of a linear system can be expressed
as a sequence of factors.

• Written as a matrix-vector product, our preceding example would read: 3 · x1 + 9 · x2 + 6 · x3

2 · x1 + 8 · x2 + 6 · x3

8 · x1 + 2 · x2 + 5 · x3

 =

 3 9 6
2 8 6
8 2 5

  x1

x2

x3

 =

 15
12
18

 . (19)

• In compact form, we write this equation as

Ax = b (20)

(21)

with

A :=

 3 9 6
2 8 6
8 2 5

 , x :=

 x1

x2

x3

 , b :=

 15
12
18

 . (22)

• We will often write a matrix as a collection of column vectors, e.g.,

A := [ a1 a2 a3 ] , (23)

with

a1 =

 3
2
8

 , a2 =

 9
8
2

 , a3 =

 8
2
5

 . (24)



• A key idea in linear algebra that is central to iterative methods is that every matrix-
vector product is a linear combination of the columns of that matrix.

• Consider an m× n matrix, V . The matrix-vector product V y is

z = V y = v1y1 + v2y2 + · · · + vnyn. (25)

• Q: What can we say about the vector z in the following expression?

z = V (V TAV )−1V Ty (26)

A: We can say that z lies in the column space of V , which is also known as the
range of V , denoted as R(V ).

That is, z is a linear combination of the columns of V . Always.

• We explore the implications of this fact in through geometric interpretations of linear
systems in the following examples.



The Geometry of Linear Equations1

• Example, 2× 2 system:

2x − y = 1

x + y = 5

}
⇐⇒

[
2 −1

1 1

] [
x

y

]
=

[
1

5

]

• Can look at this system by rows or columns.

• We will do both.

1Gilbert Strang: Linear Algebra and Its Applications



Row Form

• In the 2× 2 system, each equation represents a line:

2x − y = 1 line 1

x + y = 5 line 2

• The intersection of the two lines gives the unique point

(x, y) = (2, 3), which is the solution.

2x− y = 1

(0,−1)
x + y = 5

(0, 5)

(5, 0)

(x, y) = (2,3)

• We remark that the system is relatively ill-conditioned if the lines are close

to being parallel, that is, if the smallest subtended angle is close to 0.



Column Form

• The second (and more important) geometry is column based.

• Here, we view the system of equations as one vector equation:

Column form x

[
2

1

]
+ y

[
−1

1

]
=

[
1

5

]
.

• The problem is to find coefficients, x and y, such that the combination of

vectors on the left equals the vector on the right.

(2,1) = column 1

(4,2)

(−1, 1)

(−3, 3)

(1, 5) =
2 × (column 1)

+3 × (column 2)

• In this case, the system is ill-conditioned if the column vectors are nearly

parallel.

If these vectors are separated by an angle θ, it’s relatively easy to show that

the condition number scales as κ ∼ 2
θ as θ −→ 0.



Row Form: A Case with n=3.

2u + v + w = 5

Three planes: 4u − 6v = −2

−2u + 7v + 2w = 9

• Each equation (row) defines a plane in lR3.

• The first plane is 2u+ v +w = 5 and it contains points (5
2,0,0) and (0,5,0)

and (0,0,5).

• It is determined by three points, provided they do not lie on a line.

• Changing 5 to 10 would shift the plane to be parallel this one, with points

(5,0,0) and (0,10,0) and (0,0,10).



Row Form: A Case with n=3, cont’d.

• The second plane is 4u− 6v = −2.

• It is vertical because it can take on any w value.

• The intersection of this plane with the first is a line.

• The third plane, −2u + 7v + 2w = 9 intersects this line

at a point, (u, v, w) = (1, 1, 2), which is the solution.

• In n dimensions, the solution is the intersection point of n hyperplanes,

each of dimension n− 1.

• A bit confusing.



Column Vectors and Linear Combinations

• The preceding system in lR3 can be viewed as the vector equation

u

 2

4

−2

 + v

 1

−6

7

 + w

 1

0

2

 =

 5

−2

9

 = b.

• Our task is to find the multipliers, u, v, and w.

• The vector b is identified with the point (5,-2,9).

• We can view b as a list of numbers, a point, or an arrow.

• For n > 3, it’s probably best to view it as a list of numbers.



Vector Addition Example

 5

0

0

 +

 0

−2

0

 +

 0

0

9

 =

 5

−2

9

 .

 0
−2

0



 0
0
9



 5
0
0



b =

 5
−2

9





Linear Combination

1

 2

4

−2

 + 1

 1

−6

7

 + 2

 1

0

2

 =

 5

−2

9

 .

b =

 5
−2

9

  2
0
4

=2

 1
0
2



 2
4
−2

 +

 1
−6

7

 =

 3
−2

5





The Singular Case: Row Picture

2x− y = 1

(0,−1)

4x− 2y = −2

2x − y = 1

4x − 2y = −2

• No solution.



The Singular Case: Row Picture

2x− y = 14x− 2y = 2

(0,−1)

2x − y = 1

4x − 2y = 2

• Infinite number of solutions.



The Singular Case: Column Picture

b =

[
1

−2

]

x

[
2

4

]
+ y

[
−1

−2

]
=

[
1

−2

]

• No solution.



The Singular Case: Column Picture

b =

[
1

2

] x

[
2

4

]
+ y

[
−1

−2

]
=

[
1

−2

]

• Infinite number of solutions. (b coincident with a1 and a2.)



Singular Case: Row Picture with n=3

(a) two parallel planes (b) no intersection

(c) line of intersection (d) all planes parallel

End-on view of 3 planes.



Singular Case: Column Picture with n=3

O

b not in plane

O

b in plane

• In this case, the three columns of the

system matrix lie in the same plane.

Example: u

 1

2

3

 + v

 4

5

6

 + w

 7

8

9

 = b.

• On the left, b is not in the plane −→ no solution.

• On the right, b is in the plane −→ an inifnite number of solutions.

• Our system is solvable (we can get to any point in lR3) for any b

if the three columns are linearly independent.



Matrix Form and Matrix-Vector Products.

• We start with the familiar (row) form

2u + v + w = 5

4u − 6v = −2

−2u + 7v + 2w = 9

• In matrix form, this is 2 1 1

4 −6 0

−2 7 2

  u

v

w

 =

 5

−2

9

 , or Au = b.

• Of course, this must equal our column form,

u

 2

4

−2

 + v

 1

−6

7

 + w

 1

0

2

 =

 5

−2

9

 = b.



Matrix Form and Matrix-Vector Products, 2.

• So, if A is the matrix with columns a1, a2, and a3,

A :=

 2 1 1

4 −6 0

−2 7 2

 =:

 a1 a2 a3

 , and u :=

 u

v

w


• Then

Au = u a1 + v a2 + w a3



Matrix Form and Matrix-Vector Products, 3.

• In general, if x is the n-vector

x :=


x1

x2
...

xn

 ,
and A is an m × n matrix, then

Ax = x1 a1 + x2 a2 + · · · + xn an

= linear combination of the columns of A.

• Always.



Sigma Notation

• Let A be an m × n matrix,

A =

 a1 · · · aj · · · an



=


a11 · · · a1j · · · a1n
... ... ...

ai1 · · · aij · · · ain
... ... ...

am1 · · · amj · · · amn

 .
• Then

w = Ax =

n∑
j=1

xj aj =

n∑
j=1

aj xj.

• Components of the output,

wi = (Ax)i =

n∑
j=1

aij xj.



Matrix Multiplication

If B =

 b1 b2

 ,

Then C = AB =

 Ab1 Ab2

 .
cij =

n∑
k=1

aik bkj



Quiz Questions

1. Suppose A and B are n × n matrices.

• How many floating point operations (flops) are required to

compute C = AB?

• What is the number of memory accesses?

2. Suppose D := diag(dii) is a diagonal matrix of the form

D =


d11

d22
. . .

dnn

 ,
and C := DA.

How do the entries of C relate to those of A?

3. For the same D, how do the entries of C = AD relate to those of A?

Ans. for Q2: Think of a matrix-matrix product as a sequence of matrix vector

products, one each for a1, a2, . . . , an. That is DA = [Da1 Da2 · · · Dan].



Matrix-Vector Products, Example.

If x̂ := V
(
V TAV

)−1
V T b

= V y.

Then x̂ = linear combination of the columns of V .

• x̂ lies in the column space of V .

• x̂ lies in the range of V .

• x̂ ∈ span(V )



Some Special Matrix-Vector Products, 1/2.

• Suppose V = v and W = w are n× 1 matrices (i.e., vectors).

• Then

C = V TW = vTw =

n∑
j=1

vjwj = c

is a 1× 1 matrix (i.e., a scalar).

• We refer to vTw as the “dot” or inner product of v and w.



Some Special Matrix-Vector Products, 2/2.

• Suppose V = v and W = w are n× 1 matrices (i.e., vectors).

• Then

C = VW T = v wT = v [w1 w2 · · · wn ]

=

 vw1 vw2 · · · vwn


is an n× n matrix, with each column a multiple of v.

• We refer to v wT as the outer product of v and w.

• It is a matrix of rank 1 and not invertible (unless n = 1).

– every column is a multiple of v

– every row is a multiple of wT

• Q: Suppose C = v wT is an n× n matrix.

What subset of lRn is reachable by the matrix-vector product z = Cy?

• A: ?



Code for the general case, without pivoting:

As written, in row form:

for k = 1 : min(m,n)

piv = akk

for i = k + 1 : m

aik = aik/piv

for j = k + 1 : n

aij = aij − aik ∗ akj
end

end

end

Better memory access (much faster):

for k = 1 : min(m,n)

piv = akk

for i = k + 1 : m % put multiplier column

aik = aik/piv % in lower part of A

end

for j = k + 1 : n % Ãk+1 = Ãk+1 − ck rTk
for i = k + 1 : m

aij = aij − aik ∗ akj
end

end

end

@
@
@
@
@@

Uk

0 Ãk

︸ ︷︷ ︸
Ak

-

repartition

@
@

@
@

@@

Uk

0

ãkk

ck

rTk

Ãk+1

︸ ︷︷ ︸
Ak+1

• Remarkably, L is now resident in the overwritten lower part of A.

• To retrieve L and U , we use the following:

l = min(m,n); L = zeros(m,l); U = zeros(l,n);

for k = 1 : l

L(k : end, k) = A(k : end, k); L(k, k) = 1;

U(k, k : end) = A(k, k : end);

end



Solution of Upper Triangular Systems



u11 u12 u13 · · · · · · u1n

u22 u23 · · · · · · u2n

u33 u33

.
. ...

.
. ...

unn





x1

x2

x3

...

...

xn


=



b1

b2

b3

...

...

bn



for i = n, n− 1, . . . , 1 : xi =
1

uii

(
bi −

n∑
j=i+1

uij xj

)
.

As written:

for i = n : 1

xi = bi

for j = i+ 1 : n

xi = xi − uij xj

end

xi = xi/uii

end

Better memory access (faster):

for j = n : 1

if ujj = 0, stop - matrix is singular.

xj = bj/ujj

for i = 1 : j − 1

bi = bi − uij xj

end

end



Solution of Lower Triangular Systems



l11

l21 l22

l31 l32 l33

... .
.

... .
.

ln1 ln2 ln3 · · · · · · lnn





x1

x2

x3

...

...

xn


=



b1

b2

b3

...

...

bn



for i = 1, 2, . . . , n : xi =
1

lii

(
bi −

i−1∑
j=1

lij xj

)
.

As written:

for i = 1 : n

xi = bi

for j = 1 : i− 1

xi = xi − lij xj

end

xi = xi/lii

end

Better memory access (faster):

for j = 1 : n

if ljj = 0, stop - matrix is singular.

xj = bj/ljj

for i = j + 1 : n

bi = bi − lij xj

end

end



Solution of Upper Banded Systems

Suppose U is a banded matrix: uij = 0, j > i+ β.

For example, β = 2:

u11 u12 u13

u22 u23 u14

u33 .
.

.
.

.
.

.
.

un−2,n

.
.

un−1,n

unn





x1

x2

x3

...

...

xn


=



b1

b2

b3

...

...

bn



for i = n, n− 1, . . . , 1 : xi =
1

uii

bi − min(i+β,n)∑
j=i+1

uij xj

 .



Solution of Upper Banded Systems

for i = n, n− 1, . . . , 1 : xi =
1

uii

bi − min(i+β,n)∑
j=i+1

uij xj

 .

As written:

for i = n : 1

xi = bi, jmax := min(j + β, n)

for j = i+ 1 : jmax

xi = xi − uij xj

end

xi = xi/uii

end

Better memory access (faster):

for j = n : 1

if ujj = 0, stop - matrix is singular.

xj = bj/ujj, imin := max(1, j − β)

for i = imin : j − 1

bi = bi − uij xj

end

end

• In this case, there are ∼ 2βn operations and ∼ βn memory references (one for each
uij).

• Often β � n, which means that the upper-banded system is much faster to solve
than the full upper triangular system.

• The same savings applies to the lower-banded case.



Generating Upper Triangular Systems: LU Factorization

• Example: 

1 2 3

4 4 6 1

8 8 9 2

6 1 3 3

4 2 8 4





x1

x2

x3

x4

x5

 =



0

4

4

4

4


• First column is already in upper triangular form.

• Eliminate second column:

row3 ←− row3 −
8

4
× row2

row4 ←− row4 −
6

4
× row2

row5 ←− row5 −
4

4
× row2



1 2 3

4 4 6 1

0 −3 0

−5 −6 3
2

−2 2 3





x1

x2

x3

x4

x5

 =



0

4

−4

−2

0



• a22 = 4 is the pivot

• row2 is the pivot row

• l32 = 8
4
, l42 = 6

4
, l52 = 4

4
, is the multiplier column.



Generating Upper Triangular Systems: LU Factorization

• Augmented form. Store b in A(:, n+ 1):

1 2 3 0

4 4 6 1 4

8 8 9 2 4

6 1 3 3 4

4 2 8 4 4

 −→



1 2 3 0

4 4 6 1 4

0 −3 0 −4

−5 −6 3
2
−2

−2 2 3 0


This Case. General Case.

pivot = 4 = akk when zeroing the kth column.

pivot row = [ 4 6 1 | 4 ] = rTk = akj, j = k + 1, . . . , n [ + bk ]

multiplier column =
1

4

 8

6

4

 = ck =
aik
akk

, i = k + 1, . . . , n

=

 2
3
2

1





Next Step: k = k + 1

• We now move to eliminate the next column, k = 3.

1 2 3 0

4 4 6 1 4

0 −3 0 −4

−5 −6 3
2
−2

−2 2 3 0


• Here, we have diffiulty because the nominal pivot, a33 is zero.

• The remedy is to exchange rows with one of the remaining two, since
the order of the equations is immaterial.

• For numerical stability, we choose the row that maximizes |aik|.
• This choice ensures that all entries in the multiplier column are less than

one in modulus.



Next Step: k = k + 1

• After switching rows, we have

1 2 3 0

4 4 6 1 4

−5 −6 3
2
−2

0 −3 0 −4

−2 2 3 0

 −→



1 2 3 0

4 4 6 1 4

−5 −6 3
2
−2

0 −3 0 −4

0 42
5

22
5

4
5


pivot = −5

pivot row =

[
−6

3

2
| − 2

]

multiplier column =
1

−5

[
0

−2

]



Code for the general case, without pivoting:

As derived, in row form:

for k = 1 : min(m,n)

piv = akk

for i = k + 1 : m

aik = aik/piv

for j = k + 1 : n

aij = aij − aik ∗ akj
end

end

end

Better memory access (much faster):

for k = 1 : min(m,n)

piv = akk

for i = k + 1 : m % put multiplier column

aik = aik/piv % in lower part of A

end

for j = k + 1 : n % Ãk+1 = Ãk+1 − ck rTk
for i = k + 1 : m

aij = aij − aik ∗ akj
end

end

end

• Remarkably, L is now resident in the overwritten lower part of A.

• To retrieve L and U , we use the following:

l = min(m,n); L = zeros(m,l); U = zeros(l,n);

for k = 1 : l

L(k : end, k) = A(k : end, k); L(k, k) = 1;

U(k, k : end) = A(k, k : end);

end



Illustration of Basic Update Step:

@
@
@
@
@@

Uk

0 Ãk

︸ ︷︷ ︸
Ak

-

repartition

@
@

@
@

@@

Uk

0

ãkk

ck

rTk

Ãk+1

︸ ︷︷ ︸
Ak+1

• Ak is the reduced form of A at the start of step k.

• Ãk is the active submatrix Ak starting at row k, col k.

• After identifying the

pivot, akk

pivot row, rTk = ak:, and

multiplier column, ck = a:k/akk,

the rank-one update step reads:

Ãk+1 = Ãk+1 − ck r
T
k .

• The memory footprint of each successive submatrix is (n− 1)2, (n− 2)2, . . . 1.

• This matrix must be pulled into cache n− 1 times.

• The total number of memory references (of non-cached data) is ≈ 1
3n

3,
and the total work ≈ 2

3n
3 ops (one “+” and “*” for each submatrix entry).

• Recall that non-cached memory accesses slow (≈ 20×) compared to an fma.

• This observation suggests the idea of block factorizations that exploit BLAS3

matrix-matrix products.

• This is the essential difference between LinPack and LaPack, with the latter being
about 20× faster.



Illustration of Block-Update:

@
@
@
@
@@

Uk

0 Ãk

︸ ︷︷ ︸
Ak

-

repartition

@
@

@
@

@@

Uk

0

Akk

Ck

RT
k

Ãk+1

︸ ︷︷ ︸
Ak+1

• Here, Akk is a b× b block, where b ≈ 64 is the block size.

• In this case, the update step is

Ãk+1 = Ãk+1 − Ck A
−1
kkR

T
k .

• Since A−1
kk = (Lkk Ukk)

−1 = U−1
kk L

−1
kk , we can rewrite the update step as

RT
k = L−1

kk R
T
k

Ck = CkU
−1
kk

Ãk+1 = Ãk+1 − CkR
T
k .

• The advantage of the block strategy is that we reduce by a factor of b the number
of times that Ãk+1 is dragged into cache from main memory and that the principal
work, computation of CkR

T
k , is cast as a fast matrix-matrix product.



Matlab Code for LU, with and without Blocking:

function [L,U]=plu(A);

% Unpivoted LU factorization

m=size(A,1);

n=size(A,2);

K=min(m,n);

U=A(1:K,:);

L=zeros(m,K);

for k=1:K;

piv=U(k,k); %% pivot

row=U(k,k:end)’; %% pivot row

col=U(k+1:end,k)/piv; %% multiplier column

U(k+1:end,k:end) = U(k+1:end,k:end)-col*row’;

L(k+1:end,k) = col;

L(k,k) = 1;

end;

function [L,U]=blu(A,b);

% Unpivoted Block-LU factorization

% Blocksize = b

m=size(A,1);

n=size(A,2);

K=min(m,n);

U=A;

L=0*A;

for k=1:b:K; l=k+b-1; l=min(l,K);

P=U(k:l,k:l); [PL,PU] = plu(P); %% pivot

R=U(k:l,k+b:end); R=PL\R; %% pivot row

C=U(k+b:end,k:l); C=C/PU; %% multiplier column

U(k+b:end,k+b:end) = U(k+b:end,k+b:end) - C*R;

U(k:l,k+b:end) = R; U(k:l,k:l) = PU; U(k+b:end,k:l)=0;

L(k+b:end,k:l) = C; L(k:l,k:l) = PL;

end;



Figure 1: Time and GFLOPS for unblocked rank-1-based LU factorization (red) and blocked LU factorization with blockize
b = 64 (blue) vs. matrix size, n. For large n, there is a 40× difference in performance between Block-LU and Rank-1 LU.
The default Octave LU gains another factor of 5 for large n, and a factor of 70 for n < 100. The results show that the
dense-matrix factor times for n = 8192 are about 6 seconds for Octave when using multiple cores on an M1-based Macbook
Pro.



• Importantly, the number of operations is b(n − k)2 fma’s for the work-intensive
matrix-matrix products, while the number of memory references is only (n − k)2,
which yields a b-fold increase in computational intensity (the ratio of flops to bytes).

• For this reason, LU factorization of large matrices can often realize close to the
theoretical peak performance of a machine.

(Some argue that this so-called Linpack performance number, which is used to score
the machines in the Top 500 list, is inflated and artificial. Personally, I view it as an
existence proof. The counter-argument is that vendors focus solely on the Linpack
benchmark to the detriment of real applications.)



Iterative Solvers (Matrix Norm Example)

• Solve Ax = b.

• Consider the following fixed-point iteration:

– Initial guess: x0 = 0

– xk+1 = xk + (b− Axk), k = 0, 1, . . . , kmax.

• Cost:

– [Axk] = 2n2 if A is full

– Total cost ∼ 2n2× number of iterations.

– [Axk] = O(n) if A is sparse (number of nonzeros per

row < c, for c a constant independent of n)

– Total cost ∼ O(n)× number of iterations.

• How many iterations for ||ek|| := ||x− xk|| ≤tol (= 10−8, say)?



Iterative Solvers (Matrix Norm Example)

• Example:

A =

 1
2

1
10

1
10

1
2

 , b =

 4
5

8
5

 ,

• Iteration:

x1 = 0 + b − A0

x2 = x1 + b − Ax1

...

xk+1 = xk + b − Axk.

• matlab demo: iter demo 22a.m



x =

 1

3

 .
For each iteration k,

k xk ek

0 0.0000 1.0000

0.0000 3.0000

1 0.8000 0.2000

1.6000 1.4000

2 1.0400 -0.0400

2.3200 0.6800

3 1.0880 -0.0880

2.6560 0.3440

4 1.0784 -0.0784

2.8192 0.1808

5 1.0573 -0.0573

2.9018 0.0982

6 1.0385 -0.0385

2.9452 0.0548

7 1.0247 -0.0247

2.9687 0.0313

8 1.0155 -0.0155

2.9819 0.0181



9 1.0096 -0.0096

2.9894 0.0106



Note on Row Scaling / Permutation

Dv = scale rows of v

Pv = permute rows of v

DA = [Da1Da2 · · · Dan ] = scale rows of A

PA = [Pa1 Pa2 · · · Pan ] = permute rows of A

 2

3

4

 1 1 1

1 1 1

1 1 1

 =

 2 2 2

3 3 3

4 4 4


 1

1

1

 2 2 2

3 3 3

4 4 4

 =

 4 4 4

2 2 2

3 3 3





Note on Column Scaling / Permutation

AD = [ d1a1 d2a2 · · · dnan ] = scale columns of A

AP =
[
ap1

ap2
· · · apn

]
= permute columns of A

 1 1 1

1 1 1

1 1 1

 2

3

4

 =

 2 3 4

2 3 4

2 3 4


 2 3 4

2 3 4

2 3 4

 1

1

1

 =

 4 2 3

4 2 3

4 2 3





System Modification by Permutations

P Ax = P b Row Permutation

−→ A′ x = b′

AP P Tx = b Column Permutation

−→ A′ x′ = b



System Modification by Permutations

P A︸︷︷︸
A′

x = P b = b′ Row Permutation

AP︸︷︷︸
A′

P Tx︸︷︷︸
x′

= b Column Permutation



@
@
@
@
@@

Uk

0 Ãk

︸ ︷︷ ︸
Ak

-

repartition

@
@
@

@
@@

Uk

0

ãkk

ck

rTk

Ãk+1

︸ ︷︷ ︸
Ak+1



Gaussian Elimination as a

Sequence of Matrix-Matrix Products

A(0) := A

A(1) := M1A
(0)

A(k) := MkA
(k−1) = Mk · · ·M1A

...

A(n) := U upper triangular

= L−1A ⇐⇒ LU = A

• LU factorization and Gaussian elimination are equivalent.

• We view the solution process for solving Ax = b in two steps:

– Factorization: A −→ LU

– Solve: Ly = b, followed by

Ux = y.


