A First Preconditioner

• Consider the 1D model problem $A\underline{x} = \underline{b}$, with

$$
A = \frac{1}{h^2} \text{tridiag}[-1 \ 2 \ -1], \tag{1}
$$

and let $D = \text{diag}(A) = \frac{2}{h^2}I$.

- From Gershgorin, the eigenvalues of $D^{-1}A$ satisfy $0 < \lambda_k \leq 2$, where the strict inequality on the left derives from the fact that A is SPD.
- We also know that the extreme eigenvalues of $D^{-1}A$ satisfy

$$
\lambda_n(A) \sim 2 \tag{2}
$$

$$
\lambda_1(A) \sim \frac{h^2}{2}\pi^2 \longrightarrow 0 \text{ as } h \longrightarrow 0 \tag{3}
$$

and the condition number is $\kappa(D^{-1}A) \sim \frac{\pi^2 n^2}{4}$ $rac{n^2}{4}$.

- For this scaled system, it is the small eigenvalues that are the source of difficulty.
- Imagine if we could modify just the upper half of the spectrum such that all eigenvalues were ≤ 1 .
- Then we would improve the condition number by only a factor of 2, to $\kappa \sim \frac{\pi^2 n^2}{2}$ $rac{n^2}{2}$.
- On the other hand, if we could shift the lower end of the spectrum such that $1 < \lambda_k < 2$, the condition number would ≤ 2 , which is a *huge* improvement.
- This is the goal of coarse-grid solvers.
- To begin, we remark that application of diagonal preconditioner does not change the condition number in the case when the diagoanl of A is constant.
- It does help, however, if the diagonal elements of A span a broad range of values, e.g., if the mesh spacing is highly nonuniform.
- In the present case, it will be useful because it scales the maximum eigenvalues so that they satisfy $\lambda_k(D^{-1}A) \in [0,2]$.
- Let the eigenvalues of $D^{-1}A$ be ordered as $\lambda_1 < \lambda_2 \leq \cdots \lambda_n$, and denote the set of "small" eigenvalues as those λ_k for which $k \leq c$, where $c \ll n$ is a wavenumber cut-off value.

• Consider now a "coarse-space" preconditioner, defined as

$$
M_c^{-1} = J_c A_c^{-1} J_c^T,
$$
\t(4)

with $A_c := J_c^T A J_c$, and $J_c \in \mathbb{R}^{n \times c}$ is a low-dimensional space with only c columns.

- Recall that, in our PCG iteration, $r_k \equiv A \underline{e}_k$, always.
- If we use M_c as a preconditioner, our tentative search direction is

$$
\underline{z}_c = M_c^{-1} \underline{r} = M_c^{-1} A \underline{e} \tag{5}
$$

$$
= J_c A_c^{-1} J_c^T A \underline{e} \tag{6}
$$

$$
= J_c (J_c^T A J_c)^{-1} J_c^T A \underline{e} \tag{7}
$$

$$
= \Pi_A(J_c) \underline{e}, \tag{8}
$$

which is the A-orthogonal projection of the current error onto $\mathcal{R}(J_c)$.

- In other words, using $z_c = M_c^{-1} \underline{r}$ produces the *closest element* in the column space of J_c to the desired error correction, ϵ .
- Notice also that it is relatively inexpensive to compute z_c because we first compute J_c^T c^T in 2nc operations, then apply $A⁻¹$, which requires $2c²$ operations, then assemble the linear combination of the columns of J_c , which requires $2nc$ operations.
- If the columns of J_h are sparse, the work complexity drops to $O(n)$.
- Unfortunately, the low-cost preconditioner M_c^{-1} suffers from being rank-deficient.
- It is incapable of generating in components of the solution in $\mathcal{R}^{\perp}(J_c)$, the orthogonal complement of $\mathcal{R}(J_c)$.
- To remedy this situation, we consider an equally-inexpensive precondtioning step,

$$
\underline{z} = M_c^{-1} \underline{r} + D^{-1} \underline{r}.
$$
\n(9)

- Now, the preconditioner, $M^{-1} = M_c^{-1} + D^{-1}$, is of full rank.
- To see how this is beneficial, let's assume that $diag(A)$ is a constant and that J_h spans the first c eigenvectors of $A, J_h = [\underline{s}_1 \ \underline{s}_2 \ \dots \ \underline{s}_c],$ where \underline{s}_i^T $_{i}^{T}S_{j}=\delta_{ij}.$
- Thus, M^{-1} and A share the same eigenvectors.
- Suppose $\underline{e} = \sum_k \hat{e}_k \underline{s}_k$.
- \bullet We have,

$$
A_c = J_c^T A J_c = [\underline{s}_1 \dots \underline{s}_c]^T A [\underline{s}_1 \dots \underline{s}_c]
$$
 (10)

$$
= \text{diag}(\lambda_k), \quad k = 1, \dots, c,\tag{11}
$$

$$
A_c^{-1} = \text{diag}(\lambda_k^{-1}), \ k = 1, \dots, c,
$$
 (12)

$$
J_c^T \underline{r} = J_c^T A(\sum_{k=1}^n \hat{e}_k \underline{s}_k) \tag{13}
$$

$$
= \begin{bmatrix} \lambda_1 \hat{e}_1 \\ \lambda_2 \hat{e}_2 \\ \vdots \\ \lambda_c \hat{e}_c \end{bmatrix}
$$
 (14)

$$
A_c^{-1} J_c^T \underline{r} = \begin{bmatrix} \hat{e}_1 \\ \hat{e}_2 \\ \vdots \\ \hat{e}_c \end{bmatrix}
$$
 (15)

(16)

$$
JA_c^{-1}J_c^T \underline{r} = \sum_{k=1}^c \hat{e}_k \underline{s}_k. \tag{17}
$$

- Clearly, if $\underline{e} \in \mathcal{R}(J_c)$, we have $\underline{z} = \underline{e}$.
- If $\underline{e} \in \mathcal{R}^{\perp}(J_c)$, we have $\underline{z} = 0$.
- Thus, the eigenvalues of $M_c^{-1}A$ are either 0 or 1, depending on whether $k > c$ or $k \leq c$.
- Recall that the eigenvalues of $D^{-1}A$ are in [0,2].
- So, the low-end of the spectrum of $M¹A$ is shifted by $+1$ through the presence of M_c^{-1} , as illustrated below.

Spectra for diagonal and diag+coarse-space preconditioned operators

Figure 1: Spectrum for $D^{-1}A$ (black) and $M^{-1}A$ (red-dash) for 1D Poisson problem.

•

- Notice that, crucially, the condition number of M^{-1} is controlled by λ_n/λ_{c+1} , and not by the details of the shifted part of the spectrum.
- This observation allows for many simplications, including
	- We can replace the columns of J_c with a coarse-grid interpolant that interpolates from a few (c) nodes to the original n points.
	- Using piecewise linear interpolation yields a sparse matrix J_h .
	- We can replace $A_c = J_c^T A J_c$ with an approximation on a coarse mesh with grid spacing $H = L/(c+1)$. (Note, we may need to rescale the columns of J_c in this case, but the piecewise linear interpolants should be ok because the columns of J_c have nearly unit-norm.)