Projection-Based Iterative Methods, I

Introduction

e We wish to develop an iterative solution method for the system Ax = b,
where A € IR"*" is assumed to symmetric positive definite (SPD) unless
otherwise indicated.

e Our main interest in iterative methods is for matriz-free applications, in
which one does not have explicit access to the matrix A but instead simply
has a black box that, given a vector p returns another vector w = Ap.

e To introduce the topic, we make three observations about Jacobi relaxation,
zpq = g+ D0 — Azy) (1)
where D =diag{a;}.



e Observation 1: Subtracting (1) from z = x + D~(b — Az) yields the
associated equation for the error, ¢, := z — z;,

e = (I =D "A)e, (2)
or

e, = (I—D7'A) e, (3)

e For convergence, we require p(I — D71 A) < 1, where, for any matrix C' with
eigenvalues \;, p(C) = max;|\;| is the spectral radius of C.

e Convergence will be rapid if p(I — D71A) < 1.



e Observation 2: With z, = 0 we have ¢, = . Using the error equation (3)
we can generate an explicit polynomial form for z;:

r—xz, = (I-D Az

= [[—aiD'A—ay(D'AP? — - —apy(DTA! ]z, (4)

from which
2, = [ai]l +a D 'A%+ +a, (DA DM (5)
€ Ky(D7'A;D7'D). (6)

e Here, K} denotes the Krylov subspace.

e For any matrix C' € R™" and vector v € R", we define
Kk(07 Q) := span {Q) CQJ 0227 <. Ck_ly} = IPkfl(C)Q7 (7)

with IP,_; denoting the space of polynomials of degree < k-1 in the argu-
ment.



e Observation 3: The polynomials (3) and (5) do not reflect any properties
of our particular D~*, A, or b. The polynomial coefficients a; derive from
the binomial expansion for (I —D~*A)* and are thus not likely to be optimal.

e The projection methods developed below (of which conjugate gradients and
GMRES are two of the most common examples) allow us to find the best fit,
z; € K} such that

lz =zl < llz =2l Yo € K, (8)
for a particular norm || - ||« to be determined.

o If Ais SPD, projection methods have a per-iteration cost that is comparable
to Jacobi relaxation (1) but that require far fewer iterations to converge.



e Before proceding, we make two comments about the matrix pair D and A.

e First, we can relax the assumption that D is the diagonal of A and instead
assume that it is some more general preconditioner (perhaps also SPD if A
is).

e Second, we can also rescale the system in terms of a matrix for which D = I.
If a;; > 0 (e.g., if Ais SPD), then Az = b is equivalent to AZ = b with a; = 1
and

(SIS

A:=D:AD:  i:=D:z, b:=D b

e Consequently, we develop the projection schemes initially without reference
to the preconditioner and seek z; € Kj(A;b). We will revisit preconditioning
in a separate lecture.



Projection methods

e Projection methods are based upon the idea of minimizing the error between
z and the kth iterate, z;, in an appropriately chosen norm.

e 7, is selected from a k-dimensional subspace of IR" denoted by
Vi = span{vy vy ... Uy}

e At present, we make no assumptions about V; aside from the fact that basis
vectors, or search directions, v;, should be linearly independent and hence a
spanning set of V.

e Note that the minimization problem is well-defined even in the absence of
linear independence, but the methods prescribed below would break down
and stability is potentially compromised.



e To derive the projection-based approximation we start with

k
= Y B € Vi (9)
j=1

e Our task is to find coefficients 3; such that

|z -zl < [z —wl, Yw € V. (10)

e To be concrete, for some SPD matrix W, define

(v, w), = v'Wu (11)

lell, == (u0)2 (12)

e Later, we will choose W = A if A is SPD or W = ATA if A is nonsymmetric.



Minimization <= Orthogonalization

e We need to derive a set of equations to find the best-fit, z;.
e We start with its definining property.

e Define ¢, = x — z;, and z;. as the minimizer satisfying
|z — 2 lly < llz—wl, Vw eV (13)
= |z — (24 + ev)ll,- (14)

The second expression holds for any € € R and v € V.



e Replacing z — z;, =: ¢;, and expanding the bilinear forms, the projection
requirement (13) becomes

lerll < llex +evllz = (e +ew) Wiey + ev) (15)
= e Wep + ' Wey, + eegWu + €0’ Wo,

= llexlls + 20" Wey, + 0]l V(e,v € V).

e From the final inequality and the fact that € can be of arbritrary sign it is
clear that the error will be minimized if and only if

v'We, =0Vuv e V. (16)

Otherwise, it is always possible to find a value of € such that the expression
on the right of (15) is smaller than ||e;]|,,, which is not possible if z;, is the
minimizer of ||z — v|%.



e We conclude that a necessary condition for z; to be the best fit is
(v,ep)y = 0 Ve (17)

We say that the error is W-orthogonal to Vi, (e, L Vi) and that z; is the
projection of x onto V.

e This situation is illustrated in the accompanying figure.

e Thus, we have the following important concept:

Minimization = Orthogonal Projection.

e An equivalent expression is that the kth iterate satisfies the projection state-
ment,

(W zw = (wz)w, Vue W (18)
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e 1, being the minimizer of ||e; ||, is equivalent to e, being orthogonal to Vj
(with respect to (.,.),)-

e Note that in the limit of & — n, we have V; = IR", implying that ¢, is
orthogonal to all R".

e This can only be true if ¢, = 0 which implies z; = z.

e The projection scheme is exact in this limit, modulo round-off error.
(CG was originally viewed as a direct solver.)

11



Solution Generation

e We can use (16) to generate a system of equations to find the unknown basis
coeflicients /3; in (9).

e We'll assume that A is SPD and will minimize in the A-norm (i.e., W = A).

e Moreover, we'll assume that we have a basis,

span{z_al, Py - ,Qk} = span{v;, vy, ...,V = Vg,
with unknown basis coefficients «;.
e Denoting these two sets of vectors by the n x k£ matrices P, and V}, respec-
tively, the change of basis will allow us to transform a given set V} to the

set P that will have appropriate orthogonality properties.

e We note that the range, or column spaces, are the same, R(Py) = R(Vj),
but the bases (the actual columns) are different.

e For now, we proceed assuming we have the set P in hand.
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e Starting with

= Y
j=1
(16) implies, for i =1,...,k,
(p,en)a = p; Ag, = 0

which constitutes k equations in k unknown basis coefficients 5, j = 1, . ..

e Defining
A, = PIAP,
P, = []_91,...,]_9k]
a = [ag,..., a7
b, = [BlTQa e ,BZQ]Ta
we have

Apa

I
=
=

(19)

(29)

e Note that, because Pj is of full rank (the p,’s are linearly independent) and
A is symmetric positive definite (SPD), Ay, is also SPD and the k X k system

in (29) is solvable.
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e Once « is found, z, is computed using (19),

x, = Poa = Py(PIAP)'Plb (30)
— P(PIAP) Pl As (31)
e The expression on the right of (31) is a classic projection statement.

e It represents the A-orthogonal projection of x onto R(Fy).

e The solution z;, is in R(P;), the units of A and A~! cancel out, as do the
units of P.

e Thus, z; has the same units as z, as it should.

e It is shorter in the A-norm than z, ||| 4 < ||zl 4, unless z is in R(Py), in
which case z; = x.
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Basis for V),
e We now seek a procedure for generating the basis set {]_?j}.

e The minimization procedure (29) is greatly simplified if the basis vectors are
A-conjugate, implying:

pjAp, =0 i #j . (32)

e This results in A, being diagonal, as its entries are simply (A,);; = ]_)?A]_Jj,
and leads immediately to a closed form expression for «:

plb
P; 4D,
from which,
k T k
p b
LTy = Z TAp —_j Z (34)
J=1 ]_1 J

The second expression is the familiar form associated with the projection of
2 onto the orthogonal basis vectors p., with respect to (., )4
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e The next approximate solution, or iterate, x, ., of course has the same form
as x, with a change in subscript.

e Consequently,

k+1 pr
Tpy1 = Z TP (35)
= p;Ap;
T
Ppyi?
= Zy + 5 P (36)
Py APy
= T + opp . (37)

e The computation of z;_; is therefore a simple correction to z;;

e Only one additional coefficient, ay;, needs to be computed to update z,
and this coefficient depends only upon the current search direction Py and
the initial residual, b.

e Thus, (37) gives a two-term recurrence relation for z, implying that there
is no need to refer to the entire space V) to compute successive approxima-

tions, x;.

e We emphasize that the simple recurrence (37) holds for any A-conjugate
(i.e., A-orthogonal) basis and only for A-conjugate bases.
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e The essence of the projection procedure is the following:

— Choose p, € VF & V*=1 such that QkA]_)j =0,7 <k.

pib plo-Az_y)  plreg
Py Ap, Py Ap,, P Ap,

— Compute oy =
— Update solution: z; = z;_; + oup, .

— Update residual: r, =1, — apAp, .
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e Here, we have introduced the important (computable!) residual vector,

r, ;= b— Ax, = Ax — Ax, = Ag,, (38)

with the error vector, ¢, := x — x;.

e The residual vector is thus a direct measure of the current iteration error
(the only one available, in fact).

e It can be computed in a stable recursive way using (37).
e Let w, := Ap, , which is need in the denominator of (36).

e Then the last three steps of our A-conjugate projector will be of the form

T
pkfk_1
w, = Ap, o = =—r (39)
T Py wy
T = Ty + oup, (40)
'y = I'k 1 — OpWy. (41)
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Generating P;

e More generaly, given any linearly-independent approximation space V; =
span{vy, vs, ...,V }, we generate the requisite A-conjugate search direction

pi using the following Gram-Schmidt procedure.

D, = Yp — IA(Pr-1,vy)

with

(p.p)s PLA

(42)

(43)

(44)

e Thus, p, is essentially v, minus the A-orthogonal projection of v, onto

R(Py—1)=span{Vj_1}.

19



Krylov Subspace Projection Methods

e Note that computation of the projection in (36) requires matrix vector prod-
ucts of the form A]_oj.

e Consequently, we can choose the Krylov subspace
K (A;b) == {b,Ab,..., A" 1b) (45)

as our subspace V.
It is clear that if p, = b, then P, will be a linear combination of b and Ab.

Since Ab is required in the minimization over V; there is no additional cost
(in terms of matrix-vector products) associated with forming p,.
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e An important property of the residual vector r,, is that it is L?-orthogonal
to the search space Vi, which follows because ¢, is A-orthogonal to V.

e For all v € V,,
0 = vlAe, =v'r,. (46)

e Thus, Ry :=[ryr; ... r;_q] is an orthogonal basis and we can use it as an
approximation space.

e That is, take Vj := R(Ry).
e If our initial guess z, = 0, we have r, = b.

e Starting with v; = r(, successively construct new basis vectors from the
residual vectors.

e This will lead to a Krylov subspace approximation, Vi, = Kj(A;b).

e Because we are using projection (unlike Jacobi iteration), we refer to such
schemes as Krylov subspace projection (KSP) methods.
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e Combining the choice Vi, = R(R}) with our previous projection steps leads
to Version 1 of our KSP, which is a variant of conjugate gradient iteration.

e Starting with z, =0, p, =0, wy=0,ry=0,

for

kzl’-c-’klnax
k—1 T
- T Wy
b, = k1 — 2_9j/5ja 5;‘ =7
, p.w;
T
DTk
wy = Ap,, ap = =5
D, Wy,

Tp = Zp1 T ap,

'y = Tp 1 — OpWyg.

(47)

(48)

(49)

(50)

(51)

e [t is common to terminate when ||r;||; < tol, which of course corresponds to

llex|| yz4 < tol, but other stopping criteria are possible.

e A critical observation is that Q?A]_)j = ]_JZ.TQJ- = 0 for all 7 # j. From this
it is easy to show that §; = 0 for all j < k — 1 in (48), such that we do not
need to store all the P, and w, vectors.

e Thus, the conjugate gradient (CG) algorithm constructs the best-fit approxi-
mation for x;, € IP;_1(A)b, with respect to the A-norm, using only O(n) work

and storage.
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e A condensed variant of CG is given below. Starting with z = 0, p = 0,
w=0,r=>, and p; = 1
for k=1,..., knax (52)
Po = P1, P1 = ETE (53)
P1
f = = 54
o (54)
p =1+ fp, (55)
P1
= A = = 56
w o= oy (56)
r =z + ap (57)
r=r — quw (58)

e Notice that the storage for this unpreconditioned CG code is 4n: n values
each for z, r, p, and w, plus whatever storage is required to effect the action
of A upon p.

e On a parallel computer, the time-consuming parts of the algorithm are pri-

marily the matrix-vector product, w = Ap, and the inner-products, rTr and

plw.

e In the preconditioned variant it’s often the case that applying the precondi-
tioner is the most expensive step.
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Short-Term Recurrence for Orthogonalization

e Let’s summarize the basic space relationships.

e From (55) we have that
P, € lrory - 1] = Ry, (59)

where for conciseness we imply that, for any matrix C}, ¢ € C; means that
¢ is in, R(C}), which is the column space of C}.

e So, we have

p, €p, b, - p, |=h
€ rgry ... 1y | =R (60)
e b Ab ... A ] = Kip(AD)

e The range of the matrices P, and R are consequently the same and equal
to the Krylov subspace, Ki(A,b).

e From r, = Ae, and the best fit property of z;, we have
0 = Q{Apk = (Agk)TPk = fgpk, (61)

which is to say that the residual r, is L2-orthogonal to the search space, P.
e Note that A]_Dj e P.forj=1,...,k—1.

e Consequently,

Q]TAE,H =0, j=1,...,k—1. (62)

e So we find that §; =0 for j =1,...,k—2in (48).

e Moreover,

p, Ari # 0. (Why?) (63)
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Key Take-Aways: A SPD

e Richardson (Jacobi) / CG share the same approximation space, Kj(A;b)
e CG produces the best-fit, | —z||4, < ||z —v[|4 Vv € K.

e For any approximation space, Vj, the best-fit appoximation is the unique z;
satisfying, for all v € V4,

(v, 21)a = (0, 2)4

o If the columns of P := [p, p, ---p,] satisfy

p, € Vi (64)
piAp, = 0, i # ], (65)
then the projection can be computed using a short-term recurrence,
L = Lp Ma
(P Py) a

which is computable.

e If the columns of V;, = K, than the orthogonalization (65) can also be com-
puted with a short-term recurrence.

e In this case, the work and storage for CG is O(n) per iteration.
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