Things to Add:

e Addition of preconditioner, M.
e Chebyshev polynomial «— cos(nf)

e Chebyshev semi-iterative method



Projection-Based Iterative Methods, I1
Convergence of CG

The CG convergence analysis proceeds from the following observations.

e The kth iterate, x, is the best possible approximation in the Krylov subspace,
Ki(A;b) = span{b Ab. .. Ak_ll_)}
e 1, can be expressed as a polynomial in A as
z, = cb+ cAb + -+ A b = PEHA)D, (1)

where the unknown coefficients ¢; are optimally determined by the conjugate
gradient algorithm.

e Note that Pg&l is generally an unknown polynomial but it has the special
property that

lz — PG (Al < Nz — P (AR, ¥ PHA) € Pra(d).  (2)



e To analyze the convergence behavior, notice that the error satisfies,

e = z—x,=A"'(b—Az) =A"r,. (3)

e Thus the A-norm of the error, minimized by CG, is given by:

HQkH?ﬁl = QIZAQk (4)

= ZE{A*IZk = Hﬁ:”ix—l

e Inserting the polynomial representation for z, into the expression for r;, we
have:

r, = b— Az, (5)
= b— cAb — A% — ... — A"
e Note that the degrees of freedom in (5) are represented by the ¢;’s.

e Thus, out of all possible polynomials having the form
Pit) = 14+ mt + ... + " (6)

(i.e., those satisfying PF(0) = 1), the conjugate gradient algorithm constructs
the one which minimizes ||e.||?,

lexla = rid'n, (7)
b (I — APEG)TATHI — APEGHD
b [PP(A)TATIPE(A)L
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e To establish an upper bound on the error, we can choose the particular poly-
nomial Pf(t) = Ty(t), the Chebyshev polynomial of degree k which is scaled
and translated to satisfy 73(0) = 1.

e This choice is motivated by the fact that, for a given scaling (in this case
that P;(0) = 1), one can construct a Chebyshev polynomial which minimizes
the maximum amplitude over all polynomials in IP;(z) for x in a given interval.

e In particular, consider the interval z € [—1,1].

e On this interval,
pr(z) = cos (k cos™'(z)) = cos(k0) (8)
is a polynomial of degree k in x that clearly has extrema =+1.

e Shifting the roots of py (i.e., changing the polynomial) will cause some extrema
to lower and others to rise.

e The standard Chebyshev polynomial of degree k is the one that minimizes the
maximum on the interval x € [—1, 1] for all polynomials of the form

pr(r) = 2" + @2 + -+ arx + ao. 9)
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e Here we will consider the interval [\, \,], where A\; < Xy <--- <\, are the n
positive eigenvalues of A.

e Our scaling requirement is that ap=1, which implies p;(0) = 1,

Plz) = ap2® + ap_12" ' 4+ - + a1z + 1. (10)
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Figure 1: Comparison of error distribution for A; € [0.2:1.8] for error polynomials based on Jacobi iteration vs.
Chebyshev distribution. The CG error distribution will be smaller than the Chebyshev one. (Why?)

e Figure 1 shows an example of error polynomials of the form P!(\) for A € [0:2]
in which the translated/scaled Chebyshev polynomial of degree k minimizes
the maximum amplitude on the interval [A;:)\,]=[0.2:1.8].

e Notice that, on [A; : ;] the maximum of |P}| for the Chebyshev polynomial
(in red, labeled “CG”) is smaller than that associated with Jacobi iteration,
which is given by (1 — \)*.

e Since CG yields a better approximation than any other polynomial of degree k
then the error will be < the error induced by a Chebyshev polynomial, and

certainly better than the error associated with Jacobi iteration for any value
of £ > 1.

e The essence of the convergence proof is to use the computable maxima of the
Chebyshev polynomials to bound the error for CG.



e We begin by considering a spectral decomposition of the initial residual:

b= b, i
=1

where z; is the eigenvector of A associated with eigenvalue \; normalized such
that
2z = b, (12)

where 9;; is the Kronecker delta.

e Because A is symmetric, it has n orthogonal eigenvectors spanning IR" and,
consequently, there always exists a decomposition of the form (11).

e The (arbitrary) scaling of the eigenvectors is established by (12).
e We will use the following relationship shortly.

7.2
lzld = [A7BI% = (A7) A(ATD) = b'ATD = i— (13)



e Inserting the spectral decomposition (11) of b into the error equation (7) yields

el < (ZPI’““M) (ZPf(Aj>§—§zj> (14)

j=1
= (SS Ry 15
= ZZ 1 (M) 1(9’))\_27:&]' . (15)
j=1 i=1 J
From the orthonormality of the eigenvectors (12) we have:
2 o i b 2 N 7 21,12
ledd < SPFOOPE < AP = a2 YT = a2l (10
i=1 ‘ i=1 ! i=1 "

e Here, M is a constant corresponding to the maximum of PF();),

M = max|Pf(\)], (17)
which is the bound we seek. We have
‘Jﬁ‘l’ < M = max|PE() (18)
@ 1
< O]
< Alrgfgn\ﬂ (M)] (19)

e Since P may be any polynomial of degree k satisfying PF(0) = 1 we can
estimate a relatively sharp bound by finding a polynomial that minimizes the
right-hand side of (19).



e That is, find

PF(\) = argmin max |p()\)] (20)
pepl AEAA]

e The solution to this problem, as is often the case in minimax problems, is given
by a scaled and translated Chebyshev polynomial mentioned previously.

e Before proceeding with that analysis, however, we note that (18) provides a
sharper estimate than given by the bounds of the minimizing polynomial.

e Specifically, if most of the eigenvalues are clustered in a small region, then a
polynomial that passes through the outlying \;s and that is also small over
the clustered region would yield a tighter estimate than the Chebyshev result
presented below.

e We also note that if some of the Bj’s are zero then they would nominally be
excluded from the sums that are present in (14), save that round-off error
generally prevents their contribution from being truly void.



e A more common scenario, however, is that A has eigenvalues with multiplicity
> 1.

e Assume that A has m < n unique eigenvalues, { \; < Ao < ... < ... A, }

e In this case, b has an equivalent spectral decomposition

b= b 1)
=1

where z; is an eigenvector of A associated with eigenvalue ;.

e Note that any linear combination of eigenvectors associated with an eigenvalue
having multiplicity greater than one is also an eigenvector.

e Krylov-subspace solvers to not have a mechanism to detect this multiplicity
since every matrix-vector product will simply stretch (i.e., without rotating)
the original component in the invariant subspace.

e The net result is that KSPs converge in at most m < n iterations,
modulo round-off effects.



Chebyshev Polynomials
e We turn now to the standard estimate to bound (19).

e This is a classic minimax problem which is invariably solved by using
Chebyshev polynomials, Ty (x).

e We reiterate that (18) provides a tighter error bound because the maximum in
(18) is taken over a discrete set of eigenvalues and this maximum will generally

be smaller than the maximum found on the continuous interval [Aj, A,].

e Conjugate gradient iteration, therefore, will generally outperform the estimates
given below.

e The estimates nonetheless tend to be quite accurate in practice, however,
because the discrete eigenvalues are relatively densely packed on [A1, A,].
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e The standard Chebyshev polynomials, Ti(x) = cos(k cos™! x) have the prop-
erty that their k£ roots on the interval x € [—1,1] are chosen such that all of
their extrema on that interval are the same.

e Here, we are interested in minimizing on the interval [\, \,,], subject to
p(0) = 1.

e Because P} may be any polynomial of degree k satisfying Pf(0) = 1, we are
at liberty to choose one that has the minimal value of M.

e This is given by the scaled and translated Chebyshev polynomial,

Ti(\) = MT, (1 — 2;__1) . (22)

11



e Since Ti(z) has extrema =£1 on the interval —1 < z < 1, clearly T;(\) has
extrema +M on the interval Ay < XA < \,,.

e From the required scaling, T;(0) = 1, we find

00—\ A -I—)\ Ii—l—l
1 1 n 1

where K = A\, /\1.

e It merely remains to evaluate Ty (x) with the appropriate argument to establish
the bound.
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e We do not go through all of the steps here, but note that the process starts
with a representation for the Chebyshev polynomials when the argument of T},
has modulus > 1,

Ti(z) = 1[x+\/x2—1]k + %[az— x2—1r. (24)

2

e After a few pages of manipulation, the desired bound is'
k

va ot Q(M)k (CG bound).  (25)

M < 2

e If x> 1, then the number of iterations scales as /k. With a good precondi-
tioner, however, one can often converge in just a few (e.g., 5-20) iterations.

e The bound (25) is to be contrasted with that for optimal Richardson iteration
and steepest descent, both of which have an error bound of the form [Saad],

k
-1
|"|§ k’||“4 < (K n 1> (Richardson/steepest-descent bound).  (26)
HA ) K

e Thus, if either of these methods takes 100 iterations, we can expect CG to take
~ 10 iterations.

1See Saad, Iterative Methods for Linear Systems
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Deriving the Bound

e We present a sketch of the derivation here.

e The Taylor series arguments are formally correct but the results are more pre-
cise than they would indicate, as we mention below.

e From (23) and (24), we have
2 2

M = < 2
(a+ b+ (a—0b)F — (a+b)F (27)
where
k+1 5
= = —1. 2
a — b a (28)

e The inequality (27) will generally be quite sharp as k increases because (a — b)
will be small compared to (a + b).
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e Define ¢ := g1

terms of e,

< 1 and

compute the Taylor series expansion for ¢ and b in

K+ 1 1+e€

- kK—1 - 1—¢€ (29)
= (1+e)(l+e+e+...)

= 14+2+2+. .. (30)
= (a>-1)* (31)
= (I44c+82 4 —1)2 (32)
= (4e+8€*+. )% (33)
= 2\/‘(1+e+...). (34)
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e Summing a and b and ordering the terms in powers of e%, we have

a+b = 142Ve+2e+ 2+ 26+ ... (35)
— (I+Va)(l+Vetete+...) (36)

1+ /€

e

e From the preceding result and (27) we have
k k
1— —1
M < 2 Ve o (VA . (38)
1+ /e VE+1

e Note that the Taylor expansions used here would only indicate an asymptotic

equivalence (“~"), but the expressions on the right of (27) and (38) are in fact
equal.
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Preconditioned Case

e In the unpreconditioned case, our search space was

R(Fr) = R(Rp) = Ki(A;b) = Pr1(A)b (39)
P = Ipp, . p,] (40)
Ry = [rgry - 1yl (41)
K. = span{b Ab ... A*"'p}. (42)

e Here, we consider a preconditioned search space, SPD preconditioner M, R(Py) =
R(Zk), with

zp = M7 'r (43)

k—1
b, = zZp — ZBJ]_)] (44)
=1

e As before, we will want ]_D?A]_Dj = 0 for i # j, so that we find the best-fit (i.e.,
the projection) with a short term recurrence for z and r.

e Let’s look at the Krylov subspace generated by (43)—(44).
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e The first few terms in the algorithm yield

'y = b
p, = M7
n = b— Al_)l
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e Or, in general,

p;, € P; (M TAYM™'b (46)

Ap, € Pj(AM b = span{rgry -..1;} (47)

¢ To maintain A-conjugancy, the 3;s need to enforce the projection,

P, &= Zk — ITA(Pr-1)zy, (48)

k—1
= 2k T Zﬁﬂ_?j7 (49)

j=1

with
T
p: Az

= 50
b= (50)
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e To evaluate the inner-product in the numerator, note

Ap, € P;(AM )b (51)
zp = M7l (52)
which leads to:

ng]_)j = gg_lM_lA}_)j (53)
M_lA]_Dj € P;(M TAM b (54)
= span{p, - . .]_Dj_H}. (55)
M_lA]_Dk_2 € spandp, ...p,  }- (56)

e However, we have
ri_q Lo P j=1,...,k—1. (57)

e So, B =0for j =1,...,k—2, and we have only to retain the last term in the
series.
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e As a result, we again have a short-term recurrence

z = M'r
p =2z — Pp,
with
5 - w'z
-
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