
Things to Add:

• Addition of preconditioner, M .

• Chebyshev polynomial ←→ cos(nθ)

• Chebyshev semi-iterative method
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Projection-Based Iterative Methods, II

Convergence of CG

The CG convergence analysis proceeds from the following observations.

• The kth iterate, xk is the best possible approximation in the Krylov subspace,

Kk(A; b) = span{b Ab . . . Ak−1b}

• xk can be expressed as a polynomial in A as

xk = c1b + c2Ab + · · ·+ ckA
k−1b = P k−1

CG (A)b, (1)

where the unknown coefficients cj are optimally determined by the conjugate
gradient algorithm.

• Note that P k−1
CG is generally an unknown polynomial but it has the special

property that

‖x− P k−1
CG (A)b‖A ≤ ‖x− P k−1(A)b‖A ∀ P k−1(A) ∈ lPk−1(A). (2)
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• To analyze the convergence behavior, notice that the error satisfies,

ek = x− xk = A−1(b− Axk) = A−1rk. (3)

• Thus the A-norm of the error, minimized by CG, is given by:

‖ek‖2A = eTkAek (4)

= rTkA
−1rk = ‖rk‖2A−1 .

• Inserting the polynomial representation for xk into the expression for rk, we
have:

rk = b − Axk (5)

= b − c1Ab − c2A
2b − . . . − ckA

kb .

• Note that the degrees of freedom in (5) are represented by the cj’s.

• Thus, out of all possible polynomials having the form

P k
1 (t) = 1 + γ1t + . . . + γkt

k (6)

(i.e., those satisfying P k
1 (0) = 1), the conjugate gradient algorithm constructs

the one which minimizes ‖ek‖2,

‖ek‖2A = rTkA
−1rk (7)

= bT (I − AP k−1
CG )TA−1(I − AP k−1

CG )b

≤ bT [P k
1 (A)]TA−1P k

1 (A)b ,
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• To establish an upper bound on the error, we can choose the particular poly-
nomial P k

1 (t) = T̃k(t), the Chebyshev polynomial of degree k which is scaled
and translated to satisfy T̃k(0) = 1.

• This choice is motivated by the fact that, for a given scaling (in this case
that P1(0) = 1), one can construct a Chebyshev polynomial which minimizes
the maximum amplitude over all polynomials in lP1

k(x) for x in a given interval.

• In particular, consider the interval x ∈ [−1, 1].

• On this interval,

pk(x) := cos
(
k cos−1(x)

)
= cos ( k θ ) (8)

is a polynomial of degree k in x that clearly has extrema ±1.

• Shifting the roots of pk (i.e., changing the polynomial) will cause some extrema
to lower and others to rise.

• The standard Chebyshev polynomial of degree k is the one that minimizes the
maximum on the interval x ∈ [−1, 1] for all polynomials of the form

pk(x) = xk + ak−1x
k−1 + · · · + a1x + a0. (9)
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• Here we will consider the interval [λ1, λn], where λ1 ≤ λ2 ≤ · · · ≤ λn are the n
positive eigenvalues of A.

• Our scaling requirement is that a0=1, which implies pk(0) = 1,

P 1
k (x) = akx

k + ak−1x
k−1 + · · · + a1x + 1. (10)

Figure 1: Comparison of error distribution for λj ∈ [0.2:1.8] for error polynomials based on Jacobi iteration vs.
Chebyshev distribution. The CG error distribution will be smaller than the Chebyshev one. (Why?)

• Figure 1 shows an example of error polynomials of the form P 1
k (λ) for λ ∈ [0:2]

in which the translated/scaled Chebyshev polynomial of degree k minimizes
the maximum amplitude on the interval [λ1:λn]=[0.2:1.8].

• Notice that, on [λ1 : λn] the maximum of |P 1
k | for the Chebyshev polynomial

(in red, labeled “CG”) is smaller than that associated with Jacobi iteration,
which is given by (1− λ)k.

• Since CG yields a better approximation than any other polynomial of degree k
then the error will be ≤ the error induced by a Chebyshev polynomial, and
certainly better than the error associated with Jacobi iteration for any value
of k > 1.

• The essence of the convergence proof is to use the computable maxima of the
Chebyshev polynomials to bound the error for CG.
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• We begin by considering a spectral decomposition of the initial residual:

b =
n∑
i=1

b̂izi , (11)

where zi is the eigenvector of A associated with eigenvalue λi normalized such
that

zTi zj = δij , (12)

where δij is the Kronecker delta.

• Because A is symmetric, it has n orthogonal eigenvectors spanning lRn and,
consequently, there always exists a decomposition of the form (11).

• The (arbitrary) scaling of the eigenvectors is established by (12).

• We will use the following relationship shortly.

‖x‖2A = ‖A−1b‖2A = (A−1b)TA(A−1b) = bTA−1b =
n∑
i=1

b̂2i
λi
. (13)
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• Inserting the spectral decomposition (11) of b into the error equation (7) yields

‖ek‖2A ≤

(
n∑
i=1

P k
1 (λi)b̂izi

)T ( n∑
j=1

P k
1 (λj)

b̂j
λj
zj

)
(14)

=

(
n∑
j=1

n∑
i=1

P k
1 (λi)P

k
1 (λj)

b̂i b̂j
λj

zTi zj

)
. (15)

From the orthonormality of the eigenvectors (12) we have:

‖ek‖2A ≤
n∑
i=1

(P k
1 (λi))

2 b̂
2
i

λi
≤

n∑
i=1

M 2 b̂
2
i

λi
= M 2

n∑
i=1

b̂2i
λi

= M 2 ‖x‖2A. (16)

• Here, M is a constant corresponding to the maximum of P k
1 (λi),

M := max
i
|P k

1 (λi)|, (17)

which is the bound we seek. We have

‖ek‖
‖x‖

≤ M = max
i
|P k

1 (λi)| (18)

≤ max
λ1≤λ≤λn

|P k
1 (λ)|. (19)

• Since P k
1 may be any polynomial of degree k satisfying P k

1 (0) = 1 we can
estimate a relatively sharp bound by finding a polynomial that minimizes the
right-hand side of (19).
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• That is, find

P k
1 (λ) = argmin

p∈lP1
k

max
λ∈[λ1:λn]

|p(λ)| (20)

• The solution to this problem, as is often the case in minimax problems, is given
by a scaled and translated Chebyshev polynomial mentioned previously.

• Before proceeding with that analysis, however, we note that (18) provides a
sharper estimate than given by the bounds of the minimizing polynomial.

• Specifically, if most of the eigenvalues are clustered in a small region, then a
polynomial that passes through the outlying λis and that is also small over
the clustered region would yield a tighter estimate than the Chebyshev result
presented below.

• We also note that if some of the b̂j’s are zero then they would nominally be
excluded from the sums that are present in (14), save that round-off error
generally prevents their contribution from being truly void.
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• A more common scenario, however, is that A has eigenvalues with multiplicity
> 1.

• Assume that A has m < n unique eigenvalues, {λ1 < λ2 < . . . < . . . λm }.

• In this case, b has an equivalent spectral decomposition

b =
m∑
i=1

b̂izi , (21)

where zi is an eigenvector of A associated with eigenvalue λi.

• Note that any linear combination of eigenvectors associated with an eigenvalue
having multiplicity greater than one is also an eigenvector.

• Krylov-subspace solvers to not have a mechanism to detect this multiplicity
since every matrix-vector product will simply stretch (i.e., without rotating)
the original component in the invariant subspace.

• The net result is that KSPs converge in at most m ≤ n iterations,
modulo round-off effects.
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Chebyshev Polynomials

• We turn now to the standard estimate to bound (19).

• This is a classic minimax problem which is invariably solved by using
Chebyshev polynomials, Tk(x).

• We reiterate that (18) provides a tighter error bound because the maximum in
(18) is taken over a discrete set of eigenvalues and this maximum will generally
be smaller than the maximum found on the continuous interval [λ1, λn].

• Conjugate gradient iteration, therefore, will generally outperform the estimates
given below.

• The estimates nonetheless tend to be quite accurate in practice, however,
because the discrete eigenvalues are relatively densely packed on [λ1, λn].
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• The standard Chebyshev polynomials, Tk(x) = cos(k cos−1 x) have the prop-
erty that their k roots on the interval x ∈ [−1, 1] are chosen such that all of
their extrema on that interval are the same.

• Here, we are interested in minimizing on the interval [λ1, λn], subject to
p(0) = 1.

• Because P k
1 may be any polynomial of degree k satisfying P k

1 (0) = 1, we are
at liberty to choose one that has the minimal value of M .

• This is given by the scaled and translated Chebyshev polynomial,

T̃k(λ) = MTk

(
1 − 2

λ− λ1
λn − λ1

)
. (22)
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• Since Tk(x) has extrema ±1 on the interval −1 ≤ x ≤ 1, clearly T̃k(λ) has
extrema ±M on the interval λ1 ≤ λ ≤ λn.

• From the required scaling, T̃k(0) = 1, we find

M−1 = Tk

(
1 − 2

0− λ1
λn − λ1

)
= Tk

(
λn + λ1
λn − λ1

)
= Tk

(
κ+ 1

κ− 1

)
, (23)

where κ = λn/λ1.

• It merely remains to evaluate Tk(x) with the appropriate argument to establish
the bound.
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• We do not go through all of the steps here, but note that the process starts
with a representation for the Chebyshev polynomials when the argument of Tk
has modulus > 1,

Tk(x) =
1

2

[
x+

√
x2 − 1

]k
+

1

2

[
x−

√
x2 − 1

]k
. (24)

• After a few pages of manipulation, the desired bound is1

M ≤ 2


√

λn
λ1
− 1√

λn
λ1

+ 1


k

= 2

(√
κ − 1√
κ + 1

)k
(CG bound). (25)

• If κ � 1, then the number of iterations scales as
√
κ. With a good precondi-

tioner, however, one can often converge in just a few (e.g., 5–20) iterations.

• The bound (25) is to be contrasted with that for optimal Richardson iteration
and steepest descent, both of which have an error bound of the form [Saad],

‖ek‖A
‖x‖A

≤
(
κ − 1

κ + 1

)k
(Richardson/steepest-descent bound). (26)

• Thus, if either of these methods takes 100 iterations, we can expect CG to take
≈ 10 iterations.

1See Saad, Iterative Methods for Linear Systems
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Deriving the Bound

• We present a sketch of the derivation here.

• The Taylor series arguments are formally correct but the results are more pre-
cise than they would indicate, as we mention below.

• From (23) and (24), we have

M =
2

(a+ b)k + (a− b)k
≤ 2

(a+ b)k
, (27)

where

a =
κ+ 1

κ− 1
, b =

√
a2 − 1. (28)

• The inequality (27) will generally be quite sharp as k increases because (a− b)
will be small compared to (a+ b).
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• Define ε := κ−1 < 1 and compute the Taylor series expansion for a and b in
terms of ε,

a =
κ+ 1

κ− 1
=

1 + ε

1− ε
(29)

= (1 + ε)(1 + ε+ ε2 + . . . )

= 1 + 2ε+ 2ε2 + . . . (30)

b =
(
a2 − 1

) 1
2 (31)

=
(
1 + 4ε+ 8ε2 + · · · − 1

) 1
2 (32)

=
(
4ε+ 8ε2 + . . .

) 1
2 (33)

= 2
√
ε (1 + ε+ . . . ) . (34)
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• Summing a and b and ordering the terms in powers of ε
1
2 , we have

a+ b = 1 + 2
√
ε+ 2ε+ 2ε

3
2 + 2ε2 + . . . (35)

= (1 +
√
ε)(1 +

√
ε+ ε+ ε

3
2 + . . . ) (36)

∼ 1 +
√
ε

1−
√
ε
. (37)

• From the preceding result and (27) we have

M ≤ 2

(
1−
√
ε

1 +
√
ε

)k
= 2

(√
κ− 1√
κ+ 1

)k
. (38)

• Note that the Taylor expansions used here would only indicate an asymptotic
equivalence (“∼”), but the expressions on the right of (27) and (38) are in fact
equal.
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Preconditioned Case

• In the unpreconditioned case, our search space was

R(Pk) = R(Rk) = Kk(A; b) := lPk−1(A)b (39)

Pk = [p
1
p
2
. . . p

k
] (40)

Rk = [r0 r1 . . . rk−1] (41)

Kk = span{b Ab . . . Ak−1b}. (42)

• Here, we consider a preconditioned search space, SPD preconditionerM ,R(Pk) =
R(Zk), with

zk := M−1rk−1 (43)

p
k

:= zk −
k−1∑
j=1

βjpj . (44)

• As before, we will want pT
i
Ap

j
= 0 for i 6= j, so that we find the best-fit (i.e.,

the projection) with a short term recurrence for x and r.

• Let’s look at the Krylov subspace generated by (43)–(44).
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• The first few terms in the algorithm yield

r0 = b ∈ lP0(AM
−1)b

p
1

= M−1b ∈ lP0(M
−1A)M−1b

r1 = b− Ap
1

∈ lP1(AM
−1)b

p
2

= M−1
(
b− Ap

1

)
− β1M−1b ∈ lP1(M

−1A)M−1b

r2 = b− Ap
2

= b− AM−1
[
b− Ap

1
− β1M−1

]
∈ lP2(AM

−1)b

p
3

= M−1r2 −
∑
βjpj ∈ lP2(M

−1A)M−1b

(45)
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• Or, in general,

p
j
∈ lPj−1(M

−1A)M−1b (46)

Ap
j
∈ lPj(AM

−1)b = span{r0 r1 . . . rj} (47)

• To maintain A-conjugancy, the βjs need to enforce the projection,

p
k

:= zk − ΠA(Pk−1)zk (48)

:= zk −
k−1∑
j=1

βjpj , (49)

with

βj =
pT
j
Azk

pT
j
Ap

j

. (50)
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• To evaluate the inner-product in the numerator, note

Ap
j
∈ lPj(AM

−1)b (51)

zk = M−1rk−1 (52)

which leads to:

zTkApj = rTk−1M
−1Ap

j
(53)

M−1Ap
j
∈ lPj(M

−1A)M−1b (54)

= span{p
1
. . . p

j+1
}. (55)

M−1Ap
k−2 ∈ span{p

1
. . . p

k−1}. (56)

• However, we have

rk−1 ⊥2 p
j
, j = 1, . . . , k − 1. (57)

• So, βj = 0 for j = 1, . . . , k− 2, and we have only to retain the last term in the
series.
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• As a result, we again have a short-term recurrence

z := M−1r (58)

p := z − βp , (59)

with

β =
wTz

wTp
(60)
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