Why “Conjugate Gradients” ?

e It’s clear that CG is a KSP, which pretty much defines the method.

e Why do we call it “Conjugate Gradients” ?

e Consider the scalar

1
o) = el

1 1
= 5@%& = 5(z- z) Alz — ;)

1
= 5 [2"Az + o Az, — 2] Ad]

1
= —[2"Az + zf Az, — 220
2 k k k

o Let e(v) := z — v and consider ¢(v), for v = [v; vy ... v,]T.
e Consider the optimization problem of finding a v that will minimize ¢(v).

e If we are at a given v, what direction should we proceed to decrease ¢(v) ?

e The standard approach is to evaluate the gradient of ¢,

0
Vo(v) = [(%J (5)
0 7
Ar =
oL AL 0 (6)
o r 0 i B
For b = a—vi;bﬂj = b, (7)
P 'Q AQ = %ZZvjajkvk = Zvjaji + Zaikvk (8)
vi bj=1 k=1 j=1 k=1
= QZaikvk = 2[14@]@ (9)
k=1

e Thus, the gradient of ¢ is

Vo = Av — b = —r. (10)

e Our descent direction, is therefore r.

e The steepest descent algorithm is almost identical to CG:

e Starting with z =0, p=0, w=0,r =0, and p; = 1;

for k=1,..., knax (11)

Po P1; P1 = r'r (12)

p=r (13)

P1

= A = 14

w D= Ty (14)

T =2z + ap (15)

r=1— aqw (16)

o All we’ve done is turned off the correction to p by setting 8 = 0.

e Good news: CG starts with a good direction, and makes a small correction to
obtain a projector.

e Bad news: Steepest descent requires O(k) iterations, not O(1/k).

e Demo: stp.des.m

