Why “Conjugate Gradients” ?

e It’s clear that CG is a KSP, which pretty much defines the method.

e Why do we call it “Conjugate Gradients” ?

e Consider the scalar
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o Let e(v) := z — v and consider ¢(v), for v = [v; vy ... v,]T.
e Consider the optimization problem of finding a v that will minimize ¢(v).

e If we are at a given v, what direction should we proceed to decrease ¢(v) ?

e The standard approach is to evaluate the gradient of ¢,
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e Thus, the gradient of ¢ is

Vo = Av — b = —r. (10)

e Our descent direction, is therefore r.



e The steepest descent algorithm is almost identical to CG:

e Starting with z =0, p=0, w=0,r =0, and p; = 1;
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o All we’ve done is turned off the correction to p by setting 8 = 0.

e Good news: CG starts with a good direction, and makes a small correction to
obtain a projector.

e Bad news: Steepest descent requires O(k) iterations, not O(1/k).

e Demo: stp.des.m



