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Bilinear Problems

» A number of basic numerical problems can be thought of as bilinear
functions associated with particular order 3 tensors

> matrix multiplication
> discrete convolution
> symmetric tensor contractions

» These problems admit nontrivial fast bilinear algorithms, which correspond
to low-rank CP decompositions of the tensors

» Strassen’s O(n'°82(7)) algorithm for matrix multiplication as well as all other
subcubic matrix multiplication

> The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for
convolution are also examples of bilinear algorithms

» We will review fast bilinear algorithms for all of these approaches, using
0-based indexing when discussing convolution



Bilinear Problems

» A bilinear problem for any inputs a € R™ and b € R*¥ computes c € R™ as
defined by a tensor 7~ e R™*x"xk

C; = Ztijkajbk <= C — f(T)(a, b)
7.k

» Variants of discrete convolutions (linear convolution, correlation, cyclic
convolution) provide simple examples of T

> Linear convolution

min(i,n—1)

lik+i—35=0
bigh = {0 : otherwise - Az Ztijkajbk - Z @5bi—j
gk j=max(0,5—n+1)

> Correlation obtained by transposing the first and last mode of the linear
convolution tensor
> Cyclic convolution has t;;;, = 1ifand only if k +i— j = 0 (mod n)



Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) A = (F(4), F(B)| F(©)) computes
c=FO[(FNTa)« (FPT)],

where a and b are inputs and = is the Hadamard (pointwise) product.
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Bilinear Algorithms as Tensor Factorizations
» A bilinear algorithm corresponds to a CP tensor decomposition

R
o= DO (S0 ) (D)
r=1 j k
R
-XX (B AOVAD Y
7 k r=1
R
- Zztijkajbk where t;, = Zlfi(rc)f](f)f,gf)
ik r=

» For multiplication of n x n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank

» Tisn? x n? x n?

» Classical algorithm has rank R = n3
» Strassen’s algorithm has rank R ~ nl°g(7)



Strassen’s Algorithm

Strassen’s algorithm [C“ C”] = [A“ A”] : [B“ B”]

Cor Ca Az Aoz B> B
M; = (A1 + Ag) - (Bi1 + Ba2) Ci1 = My + My — M5 + M~
M, = (A21 + A22) - B Cy = M, + M,
Ms = Ay - (B12 — Ba) Ci2 = M5 + Ms

M, = Azs - (B21 — Bu1)
Ms = (Ai1 + A12) - Bao
Mg = (A21 — A1) - (B11 + Buia)
M7 = (A2 — Agz) - (B21 + Ba2)

Cay = My — M> + M3 + Mg

By performing the nested calls recursively, Strassen’s algorithm achieves cost,

T(n) = 7T (n/2) + O(n?) = O(7"°82") = O(n'°827)



Fast Bilinear Algorithms for Convolution
» Linear convolution corresponds to polynomial multiplication

> Let a and b be coefficients of degree n — 1 polynomial p and degree k — 1
polynomial q then

n+k—1 min(i,n—1)
(p-q)(x) = >, cia' where c¢; = 3 a;bi_;
=0 j=max(0,i—n+1)

> This view motivates algorithms based on polynomial interpolation

» The Toom-Cook convolution algorithm computes the coefficients of p - ¢ by
computing (p - q)(z;) forie {1,...,n + k — 1} and interpolates

> Let 'V, be a (n + k — 1)-by-r Vandermonde matrix based on the nodes x, so that
Vna = [p(ml)a e ap(xn+k—l)]Ty etc.

> Then to evaluate p and q at x and interpolate, we compute
¢ =V, io1(Vaa) © (Vid)

which is a bilinear algorithm



Toom-Cook Convolution and the Fourier Transform
» Vandermonde matrices are ill-conditioned with real nodes, but can be
perfectly conditioned with complex nodes
> The condition number of a Vandermonde matrix with real nodes is exponential
in its dimension
> Choosing the nodes x to be the complex roots of unity gives the discrete Fourier
transform (DFT) matrix D™, dgz) = wi* where w, = *™/"
> Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)
> The fast Fourier transform (FFT) can be used to perform products with the
DFT matrix in O(nlogn) time Taking D™ to be the ny x ny (for n = niny)
leading minor of D,, we can compute y = D™ via the split-radix-n; FFT,

n/2—1 n/2 1
ik _
Yk = Z ;W Z Z x21wn/2 + w Z x21+1wn/2
1=0 i=0

nl_l no—1
Y(kni+t) = Z ot [ sk Z T (iny +5)W g;] =Y = ([D(”) o (D(nz)A)]D(m))T
s=0



Cyclic Convolution via DFT
» For linear convolution D™*+%—1) js used, for cyclic convolution D™ suffices

> Expanding the bilinear algorithm, y = D~ (D™ f)® (D™g)), we obtain
1 n—1 n—1 1 n—1ln—1n— ( ki
ki it _ ]+t i
S (Sen)(Setn) -1 5 B T el s
im = i=0 j=0 t=0

> It suffices to observe that for any fixed u = j +t — k # 0 or # n, the outer
summation yields a zero result, since the geometric sum simplifies to

STt = (1 (@)1~ wih) =0

i=0
» The DFT also arises in the eigendecomposition of a circulant matrix
> The cyclic convolution is defined by the matrix-vector product y = Cq,b where

w
Cay = l L ]

> The eigenvalue decomposition of this matrix is Cgy = D™ ™" diag(D™a)D™



Winograd’s Algorithm for Convolution

» The DFT/FFT requires complex arithmetic, motivating alternatives such as
the more general Winograd family of algorithms

>

In Winograd'’s convolution algorithm, the remainder of the product v = pq is
computed using k distinct polynomial divisors, m'9), whose product is the
polynomial M with deg(M) > deg(v)

The k polynomial divisors, m™,m® ... m®) must be coprime
From the k remainders, u”) = pg mod m'9 the remainder v = pg mod M is
recovered via the Chinese remainder theorem
The theorem leverages Bézout’s identity, which states that there exist
polynomials n\Y) and N*) such that, for M) = M /m®,

MOND £ m@p — 1

which allow us to construct v

k
v = (Z u(i)M(i)N(i)> mod M
=1
Toom-Cook algorithms are special cases of Winograd'’s convolution algorithm,
where the polynomial divisors are m¥) (x) = « — x;, where x; are nodes



Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm can be written as a bilinear algorithm by
defining appropriate linear transformations

> Linear convolution corresponds to a product with a Toeplitz matrix, ¢ = Tq ;b
where Ty, i, € R"TF—1F js

T(a,k> = an‘—l ' ag

an'71
> Let Xy, gy € CH9(m)>(d+1) be g matrix that computes the coefficients of p = p
(mod m) when multiplied by coefficients of degree d polynomial p, p = Xy, 4P
X<m,d> = [I —LU_l]

where I is an identity matrix of dimension deg(m), L contains the top deg(m)
rows of Ty, a—deg(m)+1) and U contains the bottom d + 1 rows of

T d—deg(m)+1>



Algebraic Formulation of Winograd’s Algorithm for Convolution

> Given an operator X, 4, € C3e9(™)>(d+1) to compute coefficients of p = p
(mod m), we can efficiently compute

pg mod m = (p mod m)(g mod m) mod m,

X (1, deg(p)+deg(q)—1>(P * @) = Xim adeg(m)—1> (Xim.degp)yP) * (X, deg(q)>2))

> Further, given a bilinear algorithm (A, B, C) to compute linear convolution of
two m-dimensional vectors, we can obtain a bilinear algorithm
(X{mvdeg(p»A, X{m,deg(q»B, X (1m,2deg(m)—1,C) to compute p = pq mod m, since

P = X(m2deg(m)—15C (AT X1 deg(p)yP) © (BT X1 deg(4)5d))-



Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm effectively merges smaller bilinear
algorithms for linear convolution

> Given M =[], m® where deg(M) = n +r —1and m®,... .m® are
coprime, as well as (A%, B® CW) forie {1,...,k}, where (A®), B C®) s
a bilinear algorithm for linear convolution of vectors of dimension deg(m®)

> Winograd'’s convolution algorithm yields a bilinear algorithm (A, B, C) for
computing linear convolution with vectors of dimension r and n, where

A= [X<Tm<1>,r,1>A(1) X;Tm(k),r71>A(k)j| :
B = [X<Tm<1>,n—1>B(1) X<Tm(k>,n—1>B(k)] ,and
c=[CV ... CW]

where CD = X 11 deg(nr)+deg(m )2 Tee® deg(m )y X (m 2deg(m)—1,C ™ and
e’ are coefficients of polynomial ¢ = M® N mod M.



Algebraic Formulation of Winograd’s Algorithm for Convolution

> A missing piece of the above formulation is how to realize Bézout’s identity
to compute N@ and e®

» el = MON® mod M so it suffices to compute n) and N then apply
previously mentioned linear transformations

> The extended Euclidian algorithm can be used for this task, or one can solve a
linear system

» The coefficients of polynomials N and 7 satisfying M N + rn = 1 for coprime M
and m are

1
N -1 (0
[ﬁ] = [T<M,deg(7h)—1> T<fn,deg(M)71>]

[=EN



Nested Bilinear Algorithms for Convolution
» 2D convolution is equivalent to nested 1D convolution
> Given F € R"™*" and G € R"*", the 2D linear convolution Y = F = G with
Y € R(n+r71)x(n+r71) gives
min(a,r—1) min(b,r—1)

Yab = D > fij9a—iv—;

i=max(0,a—n+1) j=max(0,b—n+1)

» 2D bilinear problem is defined by tensor T*P) = T ® T where Q is the natural
generalization of Kronecker product to tensors

» 1D convolution can be reduced to 2D convolution with some work
> For linear convolution, with vectors of dimension n = st can reduce to s x t 2D

convolution to obtain rank (2s — 1)(2t — 1) bilinear algorithm via overlap-add
technique, which computes partial sums of the result of the 2D convolution

> For cyclic convolution, Agarwal-Cooley algorithm uses the Chinese remainder
theorem for integers to decouple dimension n = st convolution to s x t 2D cyclic
convolution via permutations
» For more details on the above derivations and a broader survey of
convolution algorithms, see https://arxiv.org/abs/1910.13367


https://arxiv.org/abs/1910.13367

Symmetric Tensor Contractions

» Bilinear algorithms can also be used to accelerate tensor contractions for
tensors with symmetry

> Recall a symmetric tensor is defined by e.g., tiji = tin; = tkij = tjki = tjik = thji

» Tensors can also have skew-symmetry (also known as antisymmetry,
permutations have +/— signs), partial symmetry (only some modes are
permutable), or group symmetry (blocks are zero if indices satisfy modular
equation)

> The simplest example of a symmetric tensor contraction is
y=Ax where A= AT

it is not obvious how to leverage symmetry to reduce cost of this contraction

» Bilinear algorithms for symmetric tensor contractions exist with lower rank
than their nonsymmetric counterparts

> Symmetric matrix-vector product can be done with n(n + 1)/2 multiplications
> Cost of contractions of partially symmetric tensors reduced via this technique



Symmetric Matrix Vector Product
» Consider computing ¢ = Ab with A = AT

> Typically requires n* multiplications since a;;b; # a;;b; and n® — n additions
» Instead can compute

i—1 n

V; = Z Uj + Z Ujq where Ujj = aij(bi + b])
j=1 Jj=i+1

using n(n — 1)/2 multiplications (since we only need w;; for i > j) and about

3n?/2 additions, then

n

ci = (2a4; — Z a;j)b; + v;
Jj=1
using n more multiplications and n? additions
> Beneficial when multiplying elements of A and b costs more than addition
> This technique yields a bilinear algorithm with rank n(n + 1)/2



Partially-Symmetric Tensor Times Matrix (TTM)
» Can use symmetric mat-vec algorithm to accelerate TTM with partially
symmetric tensor from 2n* operations to (3/2)n* + O(n?)
> Given A e R™*™ ™ with symmetry a;;i, = ajix and B € R"*", we compute

Cikt = ) @ijkbii
J

> We can think of this as a set of symmetric matrix-vector products
cBh) — AR D

and apply the fast bilinear algorithm
i—1 n
Vikl = Z Uijkl + Z uiji where g = @ik (b + bjr)
j=1 j=i+1

n
Cire = (2aiir — Y, @ije)bi + ikl
=1

using about n*/2 multiplications and n* + O(n?) additions (need only n? distinct
sums of elements of B) to compute V, then O(n?) operations to get C from V



Computing Symmetric Matrices
» Output symmetry can also be used to reduced cost, for example when
computing a symmetrized outer product C = ab” + ba”
» C = C7 so suffices to compute cij fori = j, ¢ij = a;bj + ajb;
> To reduce number of products by a factor of 2, can instead compute

Cij = (Cl,‘ + aj)(bi + b]) —V; — Yy where v; = a;b;

» To symmetrize product of two symmetric matrices, can compute
anticommutator, C = AB + BA

» Each matrix can be represented with n(n + 1)/2 elements, but products all n?
products a;,by; are distinct (so typically cost is 2n3)
» Cost can be reduced to n3/6 + O(n?) products by amortizing terms in

Cij =Z(aij + a; + ajk)(bij + b, + bjk) — naijbij
k

- (Z air + ajk)bij — (2 bir + bjk) - Z airbir — 2 a;ibjr
% % % %



General Symmetric Tensor Contractions

» We can now consider the cost of a symmetrized contraction over v indices of
symmetric tensors A (of order s + v) and B (of order v + t)

Cyt

i g = Z Z @iy iy ke koo Okt koo it

{’Llls,jljt}en(l/ll/s,jijé) ki...ky

where 11 gives all distinct partitions of the s + t indices into two subsets of
size sandt, e.g.,

(i1, j1j2) = {{i1, J1j2}, {71, 912}, {72, i1j1}}

» Such tensor contractions can be done using
st /(s + ¢+ 0)! + O(n* =1 products

> General algorithm looks similar to anticommutator matrix product

> After multiplying subsets of operands, unneeded terms are all computable with
O(ns+t+v=1) products

> These approaches correspond to bilinear algorithms of this rank



Summary of Bilinear Algorithms

We reviewed bilinear algorithms for 3 problems, which may all be viewed as
special cases of tensor contractions

» fast matrix multiplication algorithms such as Strassen’s, reduce the
asymptotic scaling of tensor contractions, as these are isomorphic to
mat.-mul.

» fast convolution algorithms such as Toom-Cook and DFT/FFT, reduce even
more significantly the asymptotic cost of tensor contractions with tensors
that have Toeplitz/Hankel/circulant structure, as these are equivalent to
convolutions

» symmetry-preserving tensor contractions algorithms reduce cost of tensor
contractions by a factor that increases factorially with tensor order, if the
tensors involved are symmetric



Summary of Nested Bilinear Algorithms

For the tensor 7™ defining any of the 3 problems for input size n, 7 @ 7™
defines a problem for larger inputs

» in each case, we may obtain a bilinear algorithm of rank R2 for 7 @ 7™
from bilinear algorithms of rank R for T via Kronecker products of the
factors

» for matrix multiplication with dimension n, T ® T defines the tensor for
multiplication of matrices with dimension n?

» for convolution of vectors with dimension n, T™ ® T defines a 2D
convolution (to which a 1D convolution of size equal to or within a constant of
n? can be reduced)

» for symmetric tensor contractions, T™ ® T defines the problem of
contracting two partially symmetric tensors (with two groups of symmetric
modes)



