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Bilinear Problems

§ A number of basic numerical problems can be thought of as bilinear
functions associated with particular order 3 tensors

§ matrix multiplication
§ discrete convolution
§ symmetric tensor contractions

§ These problems admit nontrivial fast bilinear algorithms, which correspond
to low-rank CP decompositions of the tensors

§ Strassen’s Opnlog2p7qq algorithm for matrix multiplication as well as all other
subcubic matrix multiplication

§ The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for
convolution are also examples of bilinear algorithms

§ We will review fast bilinear algorithms for all of these approaches, using
0-based indexing when discussing convolution



Bilinear Problems
§ A bilinear problem for any inputs a P Rn and b P Rk computes c P Rm as

defined by a tensor T P Rmˆnˆk

ci “
ÿ

j,k

tijkajbk ô c “ f pT qpa, bq

§ Variants of discrete convolutions (linear convolution, correlation, cyclic
convolution) provide simple examples of T

§ Linear convolution

tijk “

#

1 : k ` i´ j “ 0

0 : otherwise
ñ ci “

ÿ

j,k

tijkajbk “

minpi,n´1q
ÿ

j“maxp0,i´n`1q

ajbi´j

§ Correlation obtained by transposing the first and last mode of the linear
convolution tensor

§ Cyclic convolution has tijk “ 1 if and only if k ` i´ j “ 0 pmod nq



Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) Λ “ pF pAq,F pBq,F pCqq computes

c “ F pCqrpF pAqTaq ˚ pF pBqTbqs,

where a and b are inputs and ˚ is the Hadamard (pointwise) product.



Bilinear Algorithms as Tensor Factorizations
§ A bilinear algorithm corresponds to a CP tensor decomposition

ci “
R
ÿ

r“1

f
pCq
ir

ˆ

ÿ

j

f
pAq
jr aj

˙ˆ

ÿ

k

f
pBq
kr bk

˙

“
ÿ

j

ÿ

k

ˆ R
ÿ

r“1

f
pCq
ir f

pAq
jr f

pBq
kr

˙

ajbk

“
ÿ

j

ÿ

k

tijkajbk where tijk “
R
ÿ

r“1

f
pCq
ir f

pAq
jr f

pBq
kr

§ For multiplication of nˆ n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank

§ T is n2 ˆ n2 ˆ n2
§ Classical algorithm has rank R “ n3

§ Strassen’s algorithm has rank R « nlog2p7q



Strassen’s Algorithm

Strassen’s algorithm
„

C11 C12

C21 C22



“

„

A11 A12

A21 A22



¨

„

B11 B12

B21 B22



M1 “ pA11 `A22q ¨ pB11 `B22q

M2 “ pA21 `A22q ¨B11

M3 “ A11 ¨ pB12 ´B22q

M4 “ A22 ¨ pB21 ´B11q

M5 “ pA11 `A12q ¨B22

M6 “ pA21 ´A11q ¨ pB11 `B12q

M7 “ pA12 ´A22q ¨ pB21 `B22q

C11 “M1 `M4 ´M5 `M7

C21 “M2 `M4

C12 “M3 `M5

C22 “M1 ´M2 `M3 `M6

By performing the nested calls recursively, Strassen’s algorithm achieves cost,

T pnq “ 7T pn{2q `Opn2q “ Op7log2 nq “ Opnlog2 7q



Fast Bilinear Algorithms for Convolution
§ Linear convolution corresponds to polynomial multiplication

§ Let a and b be coe�cients of degree n´ 1 polynomial p and degree k ´ 1
polynomial q then

pp ¨ qqpxq “
n`k´1
ÿ

i“0

cix
i where ci “

minpi,n´1q
ÿ

j“maxp0,i´n`1q

ajbi´j

§ This view motivates algorithms based on polynomial interpolation

§ The Toom-Cook convolution algorithm computes the coe�cients of p ¨ q by
computing pp ¨ qqpxiq for i P t1, . . . , n` k ´ 1u and interpolates

§ Let Vr be a pn` k ´ 1q-by-r Vandermonde matrix based on the nodes x, so that
Vna “ rppx1q, ¨ ¨ ¨ , ppxn`k´1qs

T , etc.
§ Then to evaluate p and q at x and interpolate, we compute

c “ V ´1
n`k´1ppVnaq d pVkbqq

which is a bilinear algorithm



Toom-Cook Convolution and the Fourier Transform
§ Vandermonde matrices are ill-conditioned with real nodes, but can be

perfectly conditioned with complex nodes
§ The condition number of a Vandermonde matrix with real nodes is exponential

in its dimension
§ Choosing the nodes x to be the complex roots of unity gives the discrete Fourier

transform (DFT) matrix Dpnq, dpnqjk “ ωjkn where ωn “ e2iπ{n

§ Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)
§ The fast Fourier transform (FFT) can be used to perform products with the

DFT matrix in Opn log nq time Taking D̃pnq to be the n1 ˆ n2 (for n “ n1n2)
leading minor of Dn we can compute y “Dpnqx via the split-radix-n1 FFT,

yk “
n´1
ÿ

i“0

xiω
ik
n “

n{2´1
ÿ

i“0

x2iω
ik
n{2 ` ω

k
n

n{2´1
ÿ

i“0

x2i`1ω
ik
n{2

ypkn1`tq “

n1´1
ÿ

s“0

ωst
n1

«

ωsk
n

n2´1
ÿ

i“0

xpin1`sqω
ik
n2

ff

ô Y “ prD̃pnq d pDpn2qAqsDpn1qqT



Cyclic Convolution via DFT
§ For linear convolution Dpn`k´1q is used, for cyclic convolution Dpnq su�ces

§ Expanding the bilinear algorithm, y “Dpnq´1`
pDpnqfq d pDpnqgq

˘

, we obtain

yk “
1

n

n´1
ÿ

i“0

ω´ki
pnq

ˆ n´1
ÿ

j“0

ωij
pnqfj

˙ˆ n´1
ÿ

t“0

ωitpnqgt

˙

“
1

n

n´1
ÿ

i“0

n´1
ÿ

j“0

n´1
ÿ

t“0

ω
pj`t´kqi
pnq fjgt

§ It su�ces to observe that for any fixed u “ j ` t´ k ‰ 0 or ‰ n, the outer
summation yields a zero result, since the geometric sum simplifies to

n´1
ÿ

i“0

ωuipnq “ p1´ pω
u
pnqq

nq{p1´ ωupnqq “ 0

§ The DFT also arises in the eigendecomposition of a circulant matrix
§ The cyclic convolution is defined by the matrix-vector product y “ Cxayb where

Cxay “

«

a0 ¨ ¨ ¨ a1

...
. . .

...
an´1 ¨ ¨ ¨ a0

ff

§ The eigenvalue decomposition of this matrix is Cxay “Dpnq´1
diagpDpnqaqDpnq



Winograd’s Algorithm for Convolution
§ The DFT/FFT requires complex arithmetic, motivating alternatives such as

the more general Winograd family of algorithms
§ In Winograd’s convolution algorithm, the remainder of the product v “ pq is

computed using k distinct polynomial divisors, mpiq, whose product is the
polynomial M with degpMq ą degpvq

§ The k polynomial divisors, mp1q,mp2q, ¨ ¨ ¨ ,mpkq must be coprime
§ From the k remainders, upiq “ pq mod mpiq the remainder v “ pq mod M is

recovered via the Chinese remainder theorem
§ The theorem leverages Bézout’s identity, which states that there exist

polynomials npiq and N piq such that, for M piq “M{mpiq,

M piqN piq `mpiqnpiq “ 1

which allow us to construct v

v “
´

k
ÿ

i“1

upiqM piqN piq
¯

mod M

§ Toom-Cook algorithms are special cases of Winograd’s convolution algorithm,
where the polynomial divisors are mpiqpxq “ x´ χi, where χi are nodes



Algebraic Formulation of Winograd’s Algorithm for Convolution
§ Winograd’s convolution algorithm can be written as a bilinear algorithm by

defining appropriate linear transformations
§ Linear convolution corresponds to a product with a Toeplitz matrix, c “ Txa,kyb

where Txa,ky P Rn`k´1ˆk is

Txa,ky “

»

—

—

—

–

a0

...
. . .

an´1 a0

. . .
...

an´1

fi

ffi

ffi

ffi

fl

§ Let Xxm,dy P Cdegpmqˆpd`1q be a matrix that computes the coe�cients of ρ “ p
pmod mq when multiplied by coe�cients of degree d polynomial p, ρ “Xxm,dyp

Xxm,dy “
“

I ´LU´1
‰

where I is an identity matrix of dimension degpmq, L contains the top degpmq
rows of Txm,d´degpmq`1y, and U contains the bottom d` 1 rows of
Txm,d´degpmq`1y



Algebraic Formulation of Winograd’s Algorithm for Convolution

§ Given an operator Xxm,dy P Cdegpmqˆpd`1q to compute coe�cients of ρ “ p
pmod mq, we can e�ciently compute

pq mod m “ pp mod mqpq mod mq mod m,

Xxm,degppq`degpqq´1ypp ˚ qq “Xxm,2degpmq´1y

`

pXxm,degppqypq ˚ pXxm,degpqqyqq
˘

§ Further, given a bilinear algorithm pA,B,Cq to compute linear convolution of
two m-dimensional vectors, we can obtain a bilinear algorithm
pXT

xm,degppqyA,X
T
xm,degpqqyB,Xxm,2degpmq´1yCq to compute ρ “ pq mod m, since

ρ “Xxm,2degpmq´1yC
`

pATXxm,degppqypq d pB
TXxm,degpqqyqq

˘

.



Algebraic Formulation of Winograd’s Algorithm for Convolution
§ Winograd’s convolution algorithm e�ectively merges smaller bilinear

algorithms for linear convolution
§ Given M “

śk
i“1m

piq where degpMq “ n` r ´ 1 and mp1q, ¨ ¨ ¨ ,mpkq are
coprime, as well as pApiq,Bpiq,Cpiqq for i P t1, . . . , ku, where pApiq,Bpiq,Cpiqq is
a bilinear algorithm for linear convolution of vectors of dimension degpmpiqq

§ Winograd’s convolution algorithm yields a bilinear algorithm pA,B,Cq for
computing linear convolution with vectors of dimension r and n, where

A “
”

XT
xmp1q,r´1y

Ap1q ¨ ¨ ¨ XT
xmpkq,r´1y

Apkq
ı

,

B “

”

XT
xmp1q,n´1y

Bp1q ¨ ¨ ¨ XT
xmpkq,n´1y

Bpkq
ı

,and

C “
“

C̃p1q ¨ ¨ ¨ C̃pkq
‰

where C̃piq “XxM,degpMq`degpmpiqq´2yTxepiq,degpmpiqqyXxmpiq,2degpmpiqq´1yC
piq and

epiq are coe�cients of polynomial epiq “M piqN piq mod M .



Algebraic Formulation of Winograd’s Algorithm for Convolution

§ A missing piece of the above formulation is how to realize Bézout’s identity
to compute N piq and epiq

§ epiq “M piqN piq mod M so it su�ces to compute npiq and N piq then apply
previously mentioned linear transformations

§ The extended Euclidian algorithm can be used for this task, or one can solve a
linear system

§ The coe�cients of polynomials N̂ and n̂ satisfying M̂N̂ ` m̂n̂ “ 1 for coprime M̂
and m̂ are

„

N̂
n̂



“

”

T
xM̂ ,degpm̂q´1y T

xm̂,degpM̂q´1y

ı´1

»

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

fl



Nested Bilinear Algorithms for Convolution
§ 2D convolution is equivalent to nested 1D convolution

§ Given F P Rrˆr and G P Rnˆn, the 2D linear convolution Y “ F ˚G with
Y P Rpn`r´1qˆpn`r´1q gives

yab “

minpa,r´1q
ÿ

i“maxp0,a´n`1q

minpb,r´1q
ÿ

j“maxp0,b´n`1q

fijga´i,b´j

§ 2D bilinear problem is defined by tensor T p2Dq
“ T b T where b is the natural

generalization of Kronecker product to tensors
§ 1D convolution can be reduced to 2D convolution with some work

§ For linear convolution, with vectors of dimension n “ st can reduce to sˆ t 2D
convolution to obtain rank p2s´ 1qp2t´ 1q bilinear algorithm via overlap-add
technique, which computes partial sums of the result of the 2D convolution

§ For cyclic convolution, Agarwal-Cooley algorithm uses the Chinese remainder
theorem for integers to decouple dimension n “ st convolution to sˆ t 2D cyclic
convolution via permutations

§ For more details on the above derivations and a broader survey of
convolution algorithms, see https://arxiv.org/abs/1910.13367

https://arxiv.org/abs/1910.13367


Symmetric Tensor Contractions
§ Bilinear algorithms can also be used to accelerate tensor contractions for

tensors with symmetry
§ Recall a symmetric tensor is defined by e.g., tijk “ tikj “ tkij “ tjki “ tjik “ tkji
§ Tensors can also have skew-symmetry (also known as antisymmetry,

permutations have `{´ signs), partial symmetry (only some modes are
permutable), or group symmetry (blocks are zero if indices satisfy modular
equation)

§ The simplest example of a symmetric tensor contraction is

y “ Ax where A “ AT

it is not obvious how to leverage symmetry to reduce cost of this contraction

§ Bilinear algorithms for symmetric tensor contractions exist with lower rank
than their nonsymmetric counterparts

§ Symmetric matrix-vector product can be done with npn` 1q{2 multiplications
§ Cost of contractions of partially symmetric tensors reduced via this technique



Symmetric Matrix Vector Product
§ Consider computing c “ Ab with A “ AT

§ Typically requires n2 multiplications since aijbj ‰ ajibi and n2 ´ n additions
§ Instead can compute

vi “
i´1
ÿ

j“1

uij `
n
ÿ

j“i`1

uji where uij “ aijpbi ` bjq

using npn´ 1q{2 multiplications (since we only need uij for i ą j) and about
3n2{2 additions, then

ci “ p2aii ´
n
ÿ

j“1

aijqbi ` vi

using n more multiplications and n2 additions
§ Beneficial when multiplying elements of A and b costs more than addition
§ This technique yields a bilinear algorithm with rank npn` 1q{2



Partially-Symmetric Tensor Times Matrix (TTM)
§ Can use symmetric mat-vec algorithm to accelerate TTM with partially

symmetric tensor from 2n4 operations to p3{2qn4 `Opn3q

§ Given A P Rnˆnˆn with symmetry aijk “ ajik and B P Rnˆn, we compute

cikl “
ÿ

j

aijkbjl

§ We can think of this as a set of symmetric matrix-vector products

cpk,lq “ Apkqbplq

and apply the fast bilinear algorithm

vikl “
i´1
ÿ

j“1

uijkl `
n
ÿ

j“i`1

uijkl where uijkl “ aijkpbil ` bjlq

cikl “ p2aiik ´
n
ÿ

j“1

aijkqbil ` vikl

using about n4{2 multiplications and n4 `Opn3q additions (need only n3 distinct
sums of elements of B) to compute V , then Opn3q operations to get C from V



Computing Symmetric Matrices
§ Output symmetry can also be used to reduced cost, for example when

computing a symmetrized outer product C “ abT ` baT

§ C “ CT so su�ces to compute cij for i ě j, cij “ aibj ` ajbi
§ To reduce number of products by a factor of 2, can instead compute

cij “ pai ` ajqpbi ` bjq ´ vi ´ vj where vi “ aibi

§ To symmetrize product of two symmetric matrices, can compute
anticommutator, C “ AB `BA

§ Each matrix can be represented with npn` 1q{2 elements, but products all n3
products aikbkj are distinct (so typically cost is 2n3)

§ Cost can be reduced to n3{6`Opn2q products by amortizing terms in

cij “
ÿ

k

paij ` aik ` ajkqpbij ` bik ` bjkq ´ naijbij

´

´

ÿ

k

aik ` ajk

¯

bij ´ aij

´

ÿ

k

bik ` bjk

¯

´
ÿ

k

aikbik ´
ÿ

k

ajkbjk



General Symmetric Tensor Contractions
§ We can now consider the cost of a symmetrized contraction over v indices of

symmetric tensors A (of order s` v) and B (of order v ` t)

ci11...i1s,j11...j1t “
ÿ

ti1...is,j1...jtuPΠpi11...i
1
s,j
1
1...j

1
tq

ÿ

k1...kv

ai1...is,k1...kvbk1...kv ,j1...jt

where Π gives all distinct partitions of the s` t indices into two subsets of
size s and t, e.g.,

Πpi1, j1j2q “ tti1, j1j2u, tj1, i1j2u, tj2, i1j1uu

§ Such tensor contractions can be done using
ns`t`v{ps` t` vq!`Opns`t`v´1q products

§ General algorithm looks similar to anticommutator matrix product
§ After multiplying subsets of operands, unneeded terms are all computable with
Opns`t`v´1q products

§ These approaches correspond to bilinear algorithms of this rank



Summary of Bilinear Algorithms

We reviewed bilinear algorithms for 3 problems, which may all be viewed as
special cases of tensor contractions

§ fast matrix multiplication algorithms such as Strassen’s, reduce the
asymptotic scaling of tensor contractions, as these are isomorphic to
mat.-mul.

§ fast convolution algorithms such as Toom-Cook and DFT/FFT, reduce even
more significantly the asymptotic cost of tensor contractions with tensors
that have Toeplitz/Hankel/circulant structure, as these are equivalent to
convolutions

§ symmetry-preserving tensor contractions algorithms reduce cost of tensor
contractions by a factor that increases factorially with tensor order, if the
tensors involved are symmetric



Summary of Nested Bilinear Algorithms
For the tensor T pnq defining any of the 3 problems for input size n, T pnq b T pnq

defines a problem for larger inputs
§ in each case, we may obtain a bilinear algorithm of rank R2 for T pnq b T pnq

from bilinear algorithms of rank R for T pnq via Kronecker products of the
factors

§ for matrix multiplication with dimension n, T pnq b T pnq defines the tensor for
multiplication of matrices with dimension n2

§ for convolution of vectors with dimension n, T pnq b T pnq defines a 2D
convolution (to which a 1D convolution of size equal to or within a constant of
n2 can be reduced)

§ for symmetric tensor contractions, T pnq b T pnq defines the problem of
contracting two partially symmetric tensors (with two groups of symmetric
modes)


