
CS 598 EVS: Tensor Computations
Tensor Networks

Edgar Solomonik

University of Illinois at Urbana-Champaign

Tensor Networks
§ Tensor network methods seek to approximately compute quantities involving

high-order tensors, by making use of their decompositions
§ Given one or more tensors decomposed via CP, Tucker, tensor train, or another

decomposition, may want to
§ compute eigenvalues of a matricization of a tensor
§ solve a linear system or least squares problem where the right-hand side is an

unfolding of a decomposted tensor and the matrix is a matricization of another
tensor

§ apply transformations to ‘evolve’ decomposed tensor to another tensor of interest

§ Tensor network methods are often employed in problems where the tensor
order varies with problem size

§ Given n variables that take on binary values, all combinations of variable states
can be enumerated in an order n tensor, but values of all 2n entries cannot be
stored at once

§ Di�erent tensor decompositions (tensor networks) aim to represent such
tensors with Oppolypnqq degrees of freedom

§ Such problems are fundamental in the study of quantum systems

Tensor Representation of Quantum States

§ An n-qubit state can be represented by an order n amplitude tensor
T P C2ˆ¨¨¨ˆ2

§ The state is typically written as

|ψy “
ÿ

pi1,...,inqPt0,1un

ti1...in |i1 . . . iny

§ The value t˚i1...inti1...in is the probability that a classical observation of the qubit
states |ψy yields classical bit values pi1, . . . , inq

§ If T can be written as a product of rank one factors T “
Ân

i“1 u
piq, it is referred

to as a product state and does not contain nonclassical information (quantum
entanglement)

§ One of the most common decompositions used to approximate states with little
entanglement is the tensor train decomposition, which in this context is known
as the matrix product state

Hamiltonians
§ Quantum states and their evolution are described by Hamiltonians

§ A Hamiltonian is a Hermitian linear operator H that acts on a state to product a
new one |φy “ H|ψy

§ For an n-qubit system, Hamiltonians are typically described as a sum of local
operators H “

ř

iHi `
ř

i,j GiFj where Hi, Gi, Fi are operators acting on the
ith qubit, described by matrices Hi,Gi,Fi P C2ˆ2

§ The amplitude tensor is transformed by application |φy “ H|ψy of this ‘local’
Hamiltonian as

T φ
“
ÿ

i

T ψ
ˆiHi `

ÿ

i,j

T φ
ˆi Gi ˆj Fj

§ For example, a 3-qubit Hamiltonian may correspond to a matrix of the form,

H “H1 b I b I ` I bH2 b I ` I b I bH3 `G1 b F2 b I ` I bG2 b F3

§ The ground state of a Hamiltonian H is the minimizer |ψy to xψ|H|ψy{xψ|ψy,
which is the lowest eigenvalue (ground state energy) of H

Time-Evolution of Quantum States
§ The Schrödinger equation perscribes a time-evolution for a quantum state

given a Hamiltonian
§ The Schrödinger equation may be written as i ddt |ψy “ H|ψy
§ Given a state |ψy, its evolution for time t is given by solving the Schroedinger

equation as
φ “ e´iHt|ψy

§ If H is a local Hamiltonian, Trotterization provides a method for
time-evolution

§ Given a timestep τ ! 1, we will simulate the time evolution in timesteps

e´iHt|ψy “
t{τ
ź

j“1

e´iHτ |ψy

§ We make use of the Baker-Campbell-Hausdor� formula

eXeY “ eX`Y `rX,Y s{2`rX,rX,Y ss{12`...

§ Let H “
ř

iHi, then Trotterization gives e´iHτ “
ś

j e
´iHjτ `Opτ2q

Time-Evolution of a Matrix Product State (MPS)
§ To simulate time-evolution |ψptqy from a product state |ψp0qy, we can

approximate each |ψpjτ ` τqy “ e´iHτ |ψpjτqy as a matrix product state
§ Initial bond dimension (rank) of the MPS is 1
§ Consider a simple Hamiltonian Hi “ ZiZi`1 where Zi acts on the ith qubit, then

our goal is to be able to apply e´iHjτ to an MPS ψ to produce a new MPS φ

|φy “ e´iHjτ |ψy ô tφi1...in “
ÿ

kj ,kj`1

tψi1...ij´1kjkj`1ij`2...in
g
pjq
kjkj`1ijij`1

where Gpiq is described by its 4ˆ 4 matrix unfolding as eZibZi`1

§ If |φy is an MPS, so that T φ is in a tensor train decomposition, application of
Gpiq increases the bond dimension between factors i and i` 1 by at most a
factor of 4

§ Time evolution methods typically maintain an MPS with a maximal bond
dimension or desired level of accuracy and truncate accordingly

§ Imaginary time-evolution computes |ψp´itqy, which gives e´Ht|ψp0qy and with
increasing t converges to the eigenvector of H with the lowest eigenvalue

Hamiltonians as Matrix Product Operators (MPOs)
§ A matrix product operator (MPO) is a tensor-train decomposition where

every factor tensor is assigned a pair of modes of the original tensor
§ For example, if we wish to represent an 8ˆ 8 Hamiltonian H as an MPO, we

could encode it in a decomposition of a 2ˆ 2ˆ 2ˆ 2ˆ 2ˆ 2 tensor

hi1i2i3j1j2j3 “
ÿ

k1,k2

u
pHq
i1j1k1

v
pHq
i2j2k1k2

w
pHq
i3j3k2

the dimensions of the auxiliary indices k1 and k2 (internal legs) are the bond
dimensions of an MPO

§ More generally for an order 2d tensor, an MPO would be composed of d factors,
2 of which are order 3 and the rest of which are order 4

§ A matrix-vector product with a Hamiltonian represented as an MPO with bond
dimension R and a state in MPS format with bond dimension R1, |φy “ H|ψy
yields an MPS with bond dimension at most RR1

R
ÿ

k1“1

R1
ÿ

k11“1
looomooon

řRR1

K1“1

R
ÿ

k2“1

R1
ÿ

k12“1
looomooon

řRR1

K2“1

ˆ

ÿ

j1

u
pHq
i1j1k1

u
pψq
j1k11

˙

loooooooooomoooooooooon

u
pφq
i1K1

ˆ

ÿ

j2

v
pHq
i2j2k1k2

v
pψq
j2k11k

1
2

˙

looooooooooooomooooooooooooon

v
pφq
i2K1K2

ˆ

ÿ

j3

w
pHq
i3j3k2

w
pψq
j3k12

˙

looooooooooomooooooooooon

w
pφq
i3K3

Hamiltonians as Matrix Product Operators (MPOs)
§ Hamiltonians describing quantum systems can typically be represented in an

MPO format with low bond dimension
§ Consider a Hamiltonian of the form

H “ Ab I b I ` I bB b I ` I b I bC

§ We can describe it by a matrix product operator with factors that have the
following matrix unfoldings

U pHq “
“

A I I
‰

,V pHq “

»

–

I
B

I

fi

fl ,W pHq “
“

I I C
‰

with bond dimension equal to 3
§ Further, its Trotterized time-evolution operator,

e´iHτ “

´

e´iAτ b I b I
¯´

I b e´iBτ b I
¯´

I b I b e´iCτ
¯

is an MPO with bond dimension equal to 1, since its a product of three MPOs
with unit bond dimension

Generation of E�cient MPO Representations of Hamiltonians
§ More sophisticated ways of embedding a local Hamiltonian into an MPO yield

lower bond dimension
§ For example, our 3-term Hamiltonian from the previous slide actually has a rank

2 tensor train decomposition (the more general d-term case remains rank 2 with
similar structure)

U pHq “
“

A I
‰

,V pHq “

„

I
B I



,W pHq “
“

I C
‰

§ One generic scheme is to represent each local term as an MPO, sum to obtain an
MPO with larger bond dimension, then compress bond dimensions by SVDs of
each pair of neighboring tensor factors

§ This scheme is not guaranteed to find the global minima, but is generally e�ective
in practice [Hubig, McCulloch, and Schollwöck, 2017]

§ The generation of an MPO from a local Hamiltonian can also be done by
expressing the latter as a complex-weighted finite-state automata [Crosswhite
and Bacon, 2008]

§ A further complication is the consideration of presevation of group symmetries
(quantum number symmetries) in the MPO factors, see e.g., [McCulloch, 2008]

Density Matrix Renormalization Group (DMRG)
§ DMRG [S. White, 1992] is an alternating optimization scheme to approximate

by an MPS the ground state (lowest eigenvector) of a Hamiltonian described
by an MPO

H =Ψ =

Diagram from [R. Levy, E.S., and B. Clark, 2020]

DMRG Algorithm Description
§ A sweep of the DMRG algorithm updates all factor tensors in the MPS

§ Our eigenproblem is equivalent to a minimization problem,

min
Ψ

xψ|H|ψy
xψ|ψy

ô min
ψ,xψ|ψy“1

λpψq, s.t. H|ψy “ λpψq|ψy

§ Two variants possible
§ single-site optimizes one factor tensor at a time
§ two-site optimizes a pair of neighboring factor tensors at a time and adjusts the

bond dimension between them
§ Each optimization subproblem must consider the left and right environment

tensors, which are given by the contraction of everything except the tensor
factors being optimized in the expression xψ|H|ψy

§ In the two-site case, each subproblem is described by a left environment tensor
L and right environment tensor R (see part d of Figure on last page except with
center blue tensor split and absorbed into environments to the left and right) as

min
U ,}U}F“1

ÿ

iL,jL,iR,jR,aL,bL,aR,bR,k

uiLjLiRjR liLjLaLbLkrkiRjRaRbRuaLbLaRbR ,

which can be solved e�ciently with the use of iterative solvers

Cost Analysis of DMRG
§ Often the maximum bond dimension of the MPS (R) exceeds the MPO bond

dimension significantly, and while each subproblem finds an eigenvector of
an OpR2q-by-OpR2q matrix, the optimization of each site in DMRG generally
has cost OpR3q

§ Contracting an iterate U (of size OpR2q) with the environment tensor L (of size
OpR2q) has cost OpR3q and the subsequent contraction with R is similarly
OpR3q

§ Sweeps alternate direction so as to preserve intermediate environment tensors
§ When sweeping rightwards, environment tensors for the nth site can be formed

by updating the left environment tensor for n´ 1th factor tensor and using the
same right environment tensor as when last updating the nth factor

§ Typically DMRG begins with a low MPS bond dimension and increases it by a
factor of 2 after 1-4 sweeps, performing 2-4 iterations of an iterative method
such as Lanczos on each subproblem

§ The cost of this full procedure given d factors is OpdR3q

Sources of Error in Tensor Network Calculations
§ Tensor network optimization algorithms perform approximations that are

local to a few tensor factors
§ Time-evolution methods need to approximately apply two-site gates onto two

neighboring tensor factors in the MPS
§ this can be performed by contraction followed by SVD or alternative approaches

such as implicit randomized SVD, which avoids forming a large contracted
intermediate tensor

§ in both cases, a local truncation error is incurred
§ DMRG has two sources of truncation error

§ approximate SVD of neighboring factors to reduce bond dimension
§ each subproblem is typically only solved approximately (Lanczos is not executed to

full accuracy)

§ To gauge stability of these algorithms, need to bound the extent to which these
local errors may be amplified to errors in the overall state/energy

Perturbation Analysis of Tensor Networks
§ Suppose we perturb a factor tensor of an tensor network by δU , with
}δU}F {}U}F ă ε, what is the magnitude of the error in the tensor
represented by the tensor network δT “ T pUq ´ T pU ` δUq?

§ As ε goes to zero, the amplification of the error can be bounded by
di�erentiating the tensor network T pUq with respect to U

§ If T pUq is an order d tensor and U is an order p tensor, we can associate an
environment tensor J pT q

pUq of order d` p with the Jacobian of T pUq as well as
the matricized form J pT qpUq P RsizepT qˆsizepUq

§ The error can then be described to first order in ε (or exactly, if the factor tensor
U appears only once in the tensor network, in which case T pUq is linear) by

δT “ J pT qpUq vecpδUq
§ We can then bound the magnitude of the absolute and relative errors as

}δT }2 ď }J pT qpUq}2ε,
}δT }2
}T pUq}2

ď κpJ pT qpUqqε

Environment Tensor and Jacobian Matrix

Diagram from [Y. Zhang and E.S., 2020]

Canonical Forms
§ A tensor network is in a canonical form w.r.t. factor tensor U if the columns

of J pT qpUq are orthonormal, i.e., κpJ pT qpUqq “ 1

§ A canonical form insures that any relative perturbation to U is not amplified
when considering T pUq

§ Within algorithms such as time evolution and DMRG, stability is ensured if local
approximations happen when the MPS is in an appropriate canonical form

§ An MPS is easy to put into a canonical form as in this case T pUq is linear in U ,
so the Jacobian matrix is of the form

J pT qpUq “ J pT qL pUq b J pT qR pUq

where J pT qL pUq is the contraction of all factors to the left of U and J pT qR pUq is
the contraction of all factors to the left of U

§ These left and right parts can be orthogonalized by performing QR
factorizations starting from the ends of the MPS, absorbing R factors into
neighboring MPS factors, until an R factor is absrobed into U from both sides

Canonical Forms in DMRG
§ The DMRG algorithm maintains an appropraite canonical form for all local

computations
§ In the two-site version, the center of the canonical form should include two

factors (so everything to the left and right of these two should be
orthogonalized)

§ An initial sweep is performed to setup a canonical form with the center being the
last factor matrix

§ Moving the canonical form to the left is done by performing SVD of the two
factors in the center so as to maintain left-orthogonality of the right factor

§ Right orthogonality of factors to the left is automatically maintained since its
satisfied with request to any subsequent of sites starting from the left most
factor

§ Consequently, DMRG achieves stability with no additional cost overhead
§ However, canonical forms of more complicated tensor networks than the 1D

MPS may not generally exist or be easy to compute

Tensor Networks beyond 1D
§ An MPS is e�ciently contractable and easy to put into canonical form, but

other tensor networks often provide more desirable representations
§ For example, a 2D tensor network, known in physics literature as a projected

entangled pair state (PEPS) [J. Jordan, R. Orus, G. Vidal, F. Verstraete, and J. I.
Cirac, 2008]

§ PEPS tensor networks satisfy area laws expected in theory for 2D and 3D
physical systems

§ However, contraction of PEPS is #P-complete, meaning there is no known
algorithm to contract a 2D tensor network with a constant rank in polynomial
time with the number of factors

§ Canonical forms for PEPS networks exist, but an arbitrary PEPS could be not
reducible to canonical form, and practical algorithms to put PEPS into canonical
form rely on iterative optimization (see e.g., [R. Haghshenas, M.J. O’Rourke,
G.K.L Chan, 2019])

§ More generally, a particular tensor network provides low-rank representations
for a particular class of functions [K. Ye, and L.H. Lim, 2008], hence the desired
low-rank tensor network is application-dependent

	Motivation and Application to Quantum Simulation
	Overview
	Quantum States as Tensor Networks
	Time-Evolution of Quantum States
	Matrix Product Operators

	Numerical Optimization of Tensor Networks
	Density Matrix Renormalization Group (DMRG)

	Conditioning and Stability of Tensor Networks

