
CS 598 EVS: Tensor Computations
Tensor Eigenvalues

Edgar Solomonik

University of Illinois at Urbana-Champaign



Matrix Eigenvalues
§ The eigenvalue and singular value decompositions of matrices enable not

only low-rank approximation (which we can get for tensors via
decomposition), but also describe important properties of the matrix M and
associated linear function f pMqpxq “Mx

§ Eigenvalues and eigenvectors can be used to characterize eigenfunctions of
di�erential operators

§ Eigenvalues describe powers of the matrix and its limiting behavior

M “XDX´1 ñ M2 “XD2X´1

if there is a unique largest eigenvalue λ with associated left/right eigenvectors
are x, y then

lim
kÑ8

Mk{}Mk´1} “ λxy

§ They can be used to find stationary states of statistical processes and to find
low-cut partitions in graphs



Tensor Eigenvalues
§ Tensor eigenvalues and singular values can be defined based on the function
f pT q by analogy from the role of matrix eigenvalues on f pMq

§ Matrix eigenpairs pλ, xq satisfy f pMqpxq “ λx, while for an order d symmetric
tensor, we may define1,2

f pT qpx, . . . ,xq “ λx
loooooooooooomoooooooooooon

Z-eigenpair

f pT qpx, . . . ,xq “ λxd´1
loooooooooooooomoooooooooooooon

H-eigenpair

f pT qpx, . . . ,xq “ λxp´1
loooooooooooooomoooooooooooooon

lp-eigenpair

where xp “ rxp1 . . . x
p
ns

T

§ For matrices, Z-eigenpairs (lp-eigenpairs with p “ 1) and H-eigenpairs
(lp-eigenpairs with p “ d´ 1) are the same

§ Singular value/vector pairs can be defined by a tuple pσ,x1, . . . ,xdq that
satisfies d equations like f pT qpx2, . . . ,xdq “ σxp

1, e.g., for d “ 3, p “ 1,

Tp1qpx2 b x3q “ σx1, Tp2qpx1 b x3q “ σx2, Tp3qpx1 b x2q “ σx3

1Liqun Qi, “Eigenvalues of a Real Supersymmetric Tensor”, 2005
2Lek-Heng Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005



Matrix Eigenvalues and Critical Points
§ The eigenvalues/eigenvectors of a matrix are the critical values/points of its

Rayleigh quotient3

§ The Lagrangian function of fpxq “ xTAx subject to }x}22 “ }x}2}x}2 “ 1 is

Lpx, λq “ xTAx´ λp}x}22 ´ 1q

§ The first-order optimality condition are }x}2 “ 1 and
dL
dx
px, λq “ 0 ñ Ax “ λx

§ Singular vectors and singular values of matrices may be derived analogously

§ The Lagrangian function of fpx,yq “ xTAy subject to }x}2}y}2 “ 1 is

Lpx,y, σq “ xTAy ´ σp}x}2}y}2 ´ 1q

§ The first-order optimality conditions are }x}2}y}2 “ 1 and
dL
dx
px,y, σq “ 0 ñ

Ay

}y}
“
σx

}x}
,

dL
dy
px,y, σq “ 0 ñ

Ax

}x}
“
σy

}y}

3Lek-Heng Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005



Tensors Eigenvalues
§ The Lagrangian approach to matrix eigenvalues generalizes naturally to

symmetric tensors
§ The symmetric tensor is associated with a multilinear scalar-valued function
f pT qpxq “

ř

i1,...id
ti1,...,idxi1 ¨ ¨ ¨xid as well as the vector valued function

f pT qpxq “
ř

i1,...id´1
ti1,...,id´1

xi1 ¨ ¨ ¨xid´1
“ 1

d∇f
pT qpxq

§ We consider its Lagrangian subject to a normalization condition }x}dp “ 1 (for
matrices p “ 2, so for order d tensors natural to pick either p “ 2 or p “ d),

Lpx, λq “ fpxq ´ λp}x}dp ´ 1q

§ The first order optimality conditions for p “ 2 is }x}2 “ 1 and
dL
dx
px, λq “ 0 ñ f pT qpxq “ λx

§ The analogous first order optimality condition for p “ d and even p is
dL
dx
px, λq “ 0 ñ f pT qpxq “ λxd´1

is scale invariant (if px˚, λq minimizes L so does pαx˚, λq)



Tensor Singular Values and Singular Vectors
§ Tensor singular values again can be viewed as critical points of the

Lagrangian function of the multilinear map given by a tensor
§ An order d tensor is associated with a multilinear scalar-valued function

f pT qpxp1q, . . . ,xpdqq “
ÿ

i1,...id

ti1,...,idx
pdq
i1
¨ ¨ ¨x

pdq
id

as well as d vector valued functions

f
pT q
i pxp1q, . . . , x̂piq, . . . ,xpdqq “

df pT qpxp1q, . . . ,xpdqq

dxpiq
pxp1q, . . . , x̂piq, . . . ,xpdqq

e.g., f pT q1 pxp2q,xp3qq “ Tp1qpx
p2q b xp3qq

§ We consider its Lagrangian subject to a normalization condition
}x1}p ¨ ¨ ¨ }xd}p “ 1

Lpx1, . . . ,xd, σq “ fpx1, . . . ,xdq ´ σp}x1}p ¨ ¨ ¨ }xd}p ´ 1q

§ The first order optimality conditions for even p are, for all i in t1, . . . , du,
dL
dxi

px1, . . . ,xd, σq “ 0 ñ f
pT q
i px1, . . . , x̂i, . . . ,xdq “ σxp

i



Immediate Properties of Tensor Eigenvectors and Singular Vectors
§ When the tensor order d is odd, H-eigenvectors (ld-eigenvectors) and

singular vectors must be defined with additional care
§ Let φppxq “ rsgnpx1q|x1|p, . . . , sgnpxnq|xn|psT then can generally write

∇}x}p “ φp´1pxq{}x}
p´1
p

when p is even, φp´1pxq “ x
p´1

§ The eigenvalue equations can then be we written for general p as
dL
dx
px, λq “ 0 ñ f pT qpxq “ λφp´1pxq

§ The largest tensor singular value is the operator/spectral norm of the tensor

§ Recall we defined the operator norm of the tensor as

}T } “ max
x1,...,xdPSn´1

|fT px1, . . . ,xdq|

where Sn´1 is the unit sphere (norm-1 vectors)
§ This value corresponds to the largest l2 tensor singular value, or in the

symmetric case, the largest magnitude of any of the tensor Z-eigenvalues



Eigenvalues of Nonsymmetric Tensors

§ For nonsymmetric matrices case, the Lagrangian approach used above
cannot be used to describe the eigenvalues

§ The eigenvalues of a real nonsymmetric matrix may be complex
§ For tensors, we can still define the eigenvalue equations in a consistent way

with respect to matrices,

f
pT q
i px, . . . ,xq “ λφp´1pxq

so that λ,x are the mode-i an lp-eigenpair
§ For matrices, the mode-1 and mode-2 l2-eigenvectors are the left/right

eigenvectors



Connection Between Decomposition and Eigenvalues
§ In the matrix-case, the largest magnitude eigenvalue and singular value may

be associated with a rank-1 term that gives the best rank-1 decomposition
of a matrix

§ For symmetric matrices, it su�ces to consider the dominant eigenpair
§ For nonsymmetric matrices, a rank-1 truncated SVD gives the largest singular

vector/value pair and associated rank-1 approximation
§ In the tensor case, the rank-1 approximation problem corresponds to a

maximization problem4

§ Given a nonsymmetric tensor T the rank-1 tensor decomposition objective is

min
up1q,...,updqPSn´1

}T ´ σup1q b ¨ ¨ ¨ b updq}2F

§ The problem is equivalent to the maximum l2-singular value problem for T

max
up1q,...,updqPSn´1

σ s.t. @i f
pT q
i pup1q, . . . , ûpiq, . . . ,updqq “ σupiq,

4L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, R2,..., Rn)
approximation of higher-order tensors”, 2000



Derivation of Equivalence
§ The singular value problem can be derived from decomposition via the

method of Lagrange multipliers
§ In general, consider the Lagrangian function

Lpup1q, . . . ,updq, σ,λq “ }T ´ σup1q b ¨ ¨ ¨ b updq}2F `
ÿ

i

λip
ÿ

j

p}u
piq
j }

2
2 ´ 1qq

§ For order 3, we have

Lpu,v,w, σ,λq “ }T ´σubvbw}2F `λ1puTu´1q`λ2pv
Tv´1q`λ3pw

Tw´1q

§ The optimality conditions give
dL
dλ

“ 0 ñ uTu “ 1, vTv “ 1, wTw “ 1

dL
dσ

“ 0 ñ f pT qpu,v,wq “ σ

dL
du

“ 0 ñ σf
pT q
1 pv,wq “ pσ2 ` λ1qu

and similar for dL
dv , dL

dw . Premultiplying the last condition by uT , gives the second
modulo λ1, so λ1 “ 0, giving the singular value equation f pT q1 pv,wq “ σu.



Hardness of Eigenvalue Computation
§ Like rank-1 approximation, computing eigenvalues of singular values of a

tensor is NP-hard, which can be demonstrated by considering the tensor
bilinear feasibility problem5

§ Restricting the tensor to be symmetric still leads to NP-hard problems, the
largest singular vector will be the largest eigenvector a result of Banach6

max
x,y,zPSn´1

f pT qpx,y, zq “ max
xPSn´1

f pT qpx,x,xq

§ The tensor bilinear feasibility problem associated with an order 3 tensor T is
defined by the set of equations

f
pT q
1 pv,wq “ 0, f

pT q
2 pu,wq “ 0, f

pT q
3 pu,vq “ 0

where we seek solutions u,v,w ‰ 0

§ This problem is a special case of the lp singular value problem for any choice of
p with σ “ 0

5C.J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard”, 2013
6S. Banach, “On homogeneous polynomials in L2”, 1938



Hardness of Eigenvalue Computation
§ NP-hardness of the tensor bilinear feasibility problem can be demonstrated

by reduction from 3-colorability
§ The 3-coloring problem seeks to find (if possible) an assignment of one of 3

colors to each vertex of a graph that is di�erent from the color of any of its
neighbors

§ We define an optimization problem over a set of variables x P Cn that describe
the color (each will take on a power of the third root of unity), as well as
auxiliary variables y P Cn, z P C, then define the bilinear equations

@i P t1, . . . , nu, xiyi ´ z
2 “ 0, yiz ´ x

2 “ 0, xiz ´ y
2
i “ 0

@i P t1, . . . , nu,
ÿ

pi,jqPE

x2i ` xixj ` x
2
j

loooooooomoooooooon

x3
i
´x3

j
xi´xj

“ 0

§ Assume (normalize) so that z “ 1, then the first set of equations implies
yi “ 1{xi and further x3i “ 1, so labels are cubic roots of unity

§ For the second set of equations, we then must have xi ‰ xj if pi, jq P E



Power Method for Singular Value Computation

§ The high-order power method (HOPM) can be used to compute the largest
singular value7

§ The algorithm updates factors in an alternating manner until convergence, with
the ith factor matrix updated as

1. vpiq
“ f

pT q

i pup1q, . . . , ûpiq, . . . ,updq
q,

2. σ “ }vpiq
}2

3. u
piq
new “ vpiq

{σ

§ The algorithm can be derived from the Lagrangian and converges to a local
minimum

§ E�ective initialization can be achieved by HOSVD and the algorithm is equivalent
to the rank-1 version of the HOOI procedure

7L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, R2,..., Rn)
approximation of higher-order tensors”, 2000



Power Method for Symmetric Eigenvalue Problems
§ The HOPM algorithm can be adapted to symmetric tensors

§ The aforementioned Banach’s polynomial maximization theorem implies HOPM
will converge to symmetric solution even if intermediate results are
nonsymmetric

§ If symmetry is enforced on the iterates, so that

v “ f pT qpuq “ f
pT q
i pu, . . . ,uq, upnewq “ v{}v},

the algorithm is no longer guaranteed to converge (it does if the tensor order is
even and the underlying function is convex)

§ The shifted symmetric HOPM method8 alleviates this problem and enables
convergence to other eigenvalues by adding a shift so as to minimize
f pT qpuq ` αpuTuqd{2 for order d tensor T , yielding to updates such as

v “ f pT qpuq ` αu, upnewq “ v{}v},

8T.G. Kolda and J.R. Mayo, “Shifted Power Method for Computing Tensor Eigenpairs”, 2011



Perron-Frobenius Theorem for Tensor Eigenvalues
§ The Perron-Frobenius theorem states that positive matrices have a unique

real eigenvalue and the associated eigenvector is positive
§ Can be extended to nonnegative matrices so long as matrix in not reducible, i.e.,

cannot be put into the form

PAP´1 “

„

E F
0 G



where P is a permutation matrix and G has at least 1 row
§ This theorem is prominent in the study of nonsymmetric matrices
§ Its applications include analysis of stochastic processes and algebraic graph

theory
§ Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem

§ If tensor is positive, the eigenvector with the largest eigenvalue is positive
§ A nonnegative order d tensor is irreducible if there is no d-dimensional blocking

into 2d blocks that yields an o�-diagonal zero block
§ For further properties, see LH Lim, “Singular Values and Eigenvalues of Tensors:

A Variational Approach”, 2005 and Q Yang, Y Yang, “Further results for
Perron–Frobenius theorem for nonnegative tensors II”, 2011



Tensor Eigenvalues and Hypergraphs
§ Matrix eigenvalues are prominent in algebraic graph theory

§ For an unweighted graph we typically consider a binary adjacency matrix A or
the Laplacian matrix D ´A where D is a diagonal degree matrix

§ The eigenvector with the second smallest eigenvalue can be used to find a
partitioning of verticies with a provably small cut value

§ Clustering can be done via constrained low-rank approximations methods
§ Tensor eigenvalues can be used to understand partitioning/clustering

properties of uniform hypergraphs9

§ A uniform hypergraph H “ pV,Eq is described by a set of vertices V and a set of
hyperedges E, each of which is a subset of r vertices in E

§ Each hyperedge pvi, vj , vkq P E may be associated with a tensor entry tijk
§ Laplacian-like choice of tijk yields symmetric and semidefinite tensor
§ The tensor must have a zero eigenvalue and the multiplicity of the zero

eigenvalue is the number of components in the hypergraph
§ The second smallest eigenvalue lower bounds the minimum cut of H

9J. Chang, Y. Chen, L. Qi, H. Yan, ”Hypergraph Clustering Using a New Laplacian Tensor with
Applications in Image Processing”, 2019
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