CS 598 EVS: Tensor Computations
Tensor Eigenvalues

Edgar Solomonik

University of Illinois at Urbana-Champaign
Matrix Eigenvalues

- The eigenvalue and singular value decompositions of matrices enable not only low-rank approximation (which we can get for tensors via decomposition), but also describe important properties of the matrix M and associated linear function $f^{(M)}(x) = Mx$
 - Eigenvalues and eigenvectors can be used to characterize eigenfunctions of differential operators
 - Eigenvalues describe powers of the matrix and its limiting behavior
 \[M = XDX^{-1} \implies M^2 = X D^2 X^{-1} \]
 if there is a unique largest eigenvalue λ with associated left/right eigenvectors are x, y then
 \[\lim_{k \to \infty} \frac{M^k}{\|M^{k-1}\|} = \lambda xy \]
 - They can be used to find stationary states of statistical processes and to find low-cut partitions in graphs
Tensor eigenvalues and singular values can be defined based on the function $f^{(T)}$ by analogy from the role of matrix eigenvalues on $f^{(M)}$

Matrix eigenpairs (λ, x) satisfy $f^{(M)}(x) = \lambda x$, while for an order d symmetric tensor, we may define

\[
\begin{align*}
\begin{aligned}
\text{Z-eigenpair} & : & f^{(T)}(x, \ldots, x) &= \lambda x \\
\text{H-eigenpair} & : & f^{(T)}(x, \ldots, x) &= \lambda x^{d-1} \\
\text{l^p-eigenpair} & : & f^{(T)}(x, \ldots, x) &= \lambda x^{p-1}
\end{aligned}
\end{align*}
\]

where $x^p = [x_1^p \ldots x_n^p]^T$

For matrices, Z-eigenpairs (l^p-eigenpairs with $p = 1$) and H-eigenpairs (l^p-eigenpairs with $p = d - 1$) are the same

Singular value/vector pairs can be defined by a tuple $(\sigma, x_1, \ldots, x_d)$ that satisfies d equations like $f^{(T)}(x_2, \ldots, x_d) = \sigma x_1^p$, e.g., for $d = 3, p = 1$,

\[
\begin{align*}
T_{(1)}(x_2 \otimes x_3) &= \sigma x_1, & T_{(2)}(x_1 \otimes x_3) &= \sigma x_2, & T_{(3)}(x_1 \otimes x_2) &= \sigma x_3
\end{align*}
\]

1 Liqun Qi, “Eigenvalues of a Real Supersymmetric Tensor”, 2005
Matrix Eigenvalues and Critical Points

- The eigenvalues/eigenvectors of a matrix are the critical values/points of its Rayleigh quotient\(^3\)

 - The Lagrangian function of \(f(x) = x^T Ax \) subject to \(\|x\|_2^2 = \|x\|_2 \|x\|_2 = 1 \) is

\[
\mathcal{L}(x, \lambda) = x^T Ax - \lambda(\|x\|_2^2 - 1)
\]

 - The first-order optimality condition are \(\|x\|_2 = 1 \) and

\[
\frac{d\mathcal{L}}{dx}(x, \lambda) = 0 \implies Ax = \lambda x
\]

- Singular vectors and singular values of matrices may be derived analogously

 - The Lagrangian function of \(f(x, y) = x^T Ay \) subject to \(\|x\|_2 \|y\|_2 = 1 \) is

\[
\mathcal{L}(x, y, \sigma) = x^T Ay - \sigma(\|x\|_2 \|y\|_2 - 1)
\]

 - The first-order optimality conditions are \(\|x\|_2 \|y\|_2 = 1 \) and

\[
\frac{d\mathcal{L}}{dx}(x, y, \sigma) = 0 \implies \frac{Ay}{\|y\|} = \frac{\sigma x}{\|x\|}, \quad \frac{d\mathcal{L}}{dy}(x, y, \sigma) = 0 \implies \frac{Ax}{\|x\|} = \frac{\sigma y}{\|y\|}
\]

The Lagrangian approach to matrix eigenvalues generalizes naturally to symmetric tensors. The symmetric tensor is associated with a multilinear scalar-valued function

\[f^{(T)}(x) = \sum_{i_1, \ldots, i_d} t_{i_1, \ldots, i_d} x_{i_1} \cdots x_{i_d} \]

as well as the vector valued function

\[f^{(T)}(x) = \sum_{i_1, \ldots, i_{d-1}} t_{i_1, \ldots, i_{d-1}} x_{i_1} \cdots x_{i_{d-1}} = \frac{1}{d} \nabla f^{(T)}(x) \]

We consider its Lagrangian subject to a normalization condition \(\|x\|_p^d = 1 \) (for matrices \(p = 2 \), so for order \(d \) tensors natural to pick either \(p = 2 \) or \(p = d \)),

\[\mathcal{L}(x, \lambda) = f(x) - \lambda(\|x\|_p^d - 1) \]

The first order optimality conditions for \(p = 2 \) is \(\|x\|_2 = 1 \) and

\[\frac{d\mathcal{L}}{dx}(x, \lambda) = 0 \quad \Rightarrow \quad f^{(T)}(x) = \lambda x \]

The analogous first order optimality condition for \(p = d \) and even \(p \) is

\[\frac{d\mathcal{L}}{dx}(x, \lambda) = 0 \quad \Rightarrow \quad f^{(T)}(x) = \lambda x^{d-1} \]

is scale invariant (if \((x^*, \lambda)\) minimizes \(\mathcal{L} \) so does \((\alpha x^*, \lambda)\))
Tensor Singular Values and Singular Vectors

- Tensor singular values again can be viewed as critical points of the Lagrangian function of the multilinear map given by a tensor
- An order \(d \) tensor is associated with a multilinear scalar-valued function
 \[
 f(\mathcal{T})(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(d)}) = \sum_{i_1, \ldots, i_d} t_{i_1, \ldots, i_d} x_{i_1}^{(d)} \cdots x_{i_d}^{(d)}
 \]
as well as \(d \) vector valued functions
 \[
 f_i(\mathcal{T})(\mathbf{x}^{(1)}, \ldots, \hat{\mathbf{x}}^{(i)}, \ldots, \mathbf{x}^{(d)}) = \frac{df(\mathcal{T})(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(d)})}{d\mathbf{x}^{(i)}}(\mathbf{x}^{(1)}, \ldots, \hat{\mathbf{x}}^{(i)}, \ldots, \mathbf{x}^{(d)})
 \]
e.g., \(f_1(\mathcal{T})(\mathbf{x}^{(2)}, \mathbf{x}^{(3)}) = T_{(1)}(\mathbf{x}^{(2)} \otimes \mathbf{x}^{(3)}) \)
- We consider its Lagrangian subject to a normalization condition
 \[
 \|\mathbf{x}_1\|_p \cdots \|\mathbf{x}_d\|_p = 1
 \]
 \[
 \mathcal{L}(\mathbf{x}_1, \ldots, \mathbf{x}_d, \sigma) = f(\mathbf{x}_1, \ldots, \mathbf{x}_d) - \sigma(\|\mathbf{x}_1\|_p \cdots \|\mathbf{x}_d\|_p - 1)
 \]
- The first order optimality conditions for even \(p \) are, for all \(i \) in \(\{1, \ldots, d\} \),
 \[
 \frac{d\mathcal{L}}{d\mathbf{x}_i}(\mathbf{x}_1, \ldots, \mathbf{x}_d, \sigma) = 0 \implies f_i(\mathcal{T})(\mathbf{x}_1, \ldots, \hat{\mathbf{x}}_i, \ldots, \mathbf{x}_d) = \sigma \mathbf{x}_i^p
Immediate Properties of Tensor Eigenvectors and Singular Vectors

- When the tensor order d is odd, H-eigenvectors (l^d-eigenvectors) and singular vectors must be defined with additional care
 - Let $\phi_p(x) = [\text{sgn}(x_1)|x_1|^p, \ldots, \text{sgn}(x_n)|x_n|^p]^T$ then can generally write
 $\nabla \|x\|_p = \phi_{p-1}(x)/\|x\|_p^{p-1}$
 when p is even, $\phi_{p-1}(x) = x^{p-1}$

- The eigenvalue equations can then be written for general p as
 $\frac{d\mathcal{L}}{dx}(x, \lambda) = 0 \implies f^{(\mathcal{T})}(x) = \lambda \phi_{p-1}(x)$

- The largest tensor singular value is the operator/spectral norm of the tensor
 - Recall we defined the operator norm of the tensor as
 $\|\mathcal{T}\| = \max_{x_1,\ldots,x_d \in \mathbb{S}^{n-1}} |f^{\mathcal{T}}(x_1, \ldots, x_d)|$
 where \mathbb{S}^{n-1} is the unit sphere (norm-1 vectors)
 - This value corresponds to the largest l^2 tensor singular value, or in the symmetric case, the largest magnitude of any of the tensor Z-eigenvalues
For nonsymmetric matrices case, the Lagrangian approach used above cannot be used to describe the eigenvalues

- The eigenvalues of a real nonsymmetric matrix may be complex
- For tensors, we can still define the eigenvalue equations in a consistent way with respect to matrices,

\[
f_i^{(\mathcal{T})}(x, \ldots, x) = \lambda \phi_{p-1}(x)
\]

so that \(\lambda, x \) are the mode-\(i \) an \(l^p \)-eigenpair

- For matrices, the mode-1 and mode-2 \(l^2 \)-eigenvectors are the left/right eigenvectors
Connection Between Decomposition and Eigenvalues

- In the matrix-case, the largest magnitude eigenvalue and singular value may be associated with a rank-1 term that gives the best rank-1 decomposition of a matrix
 - For symmetric matrices, it suffices to consider the dominant eigenpair
 - For nonsymmetric matrices, a rank-1 truncated SVD gives the largest singular vector/value pair and associated rank-1 approximation
- In the tensor case, the rank-1 approximation problem corresponds to a maximization problem
 - Given a nonsymmetric tensor \mathcal{T} the rank-1 tensor decomposition objective is
 $$\min_{u^{(1)}, \ldots, u^{(d)} \in \mathbb{S}^{n-1}} \| \mathcal{T} - \sigma u^{(1)} \otimes \cdots \otimes u^{(d)} \|_F^2$$
 - The problem is equivalent to the maximum l^2-singular value problem for \mathcal{T}
 $$\max_{u^{(1)}, \ldots, u^{(d)} \in \mathbb{S}^{n-1}} \sigma \quad \text{s.t.} \quad \forall i \ f_i(\mathcal{T}) (u^{(1)}, \ldots, \hat{u}^{(i)}, \ldots, u^{(d)}) = \sigma u^{(i)},$$

4 L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R_1, R_2, \ldots, R_n) approximation of higher-order tensors”, 2000
The singular value problem can be derived from decomposition via the method of Lagrange multipliers.

In general, consider the Lagrangian function

\[\mathcal{L}(u^{(1)}, \ldots, u^{(d)}, \sigma, \lambda) = \| \mathcal{T} - \sigma u^{(1)} \otimes \cdots \otimes u^{(d)} \|_F^2 + \sum_i \lambda_i \left(\sum_j (\| u_j^{(i)} \|_2^2 - 1) \right) \]

For order 3, we have

\[\mathcal{L}(u, v, w, \sigma, \lambda) = \| \mathcal{T} - \sigma u \otimes v \otimes w \|_F^2 + \lambda_1 (u^T u - 1) + \lambda_2 (v^T v - 1) + \lambda_3 (w^T w - 1) \]

The optimality conditions give

\[\frac{d\mathcal{L}}{d\lambda} = 0 \quad \Rightarrow \quad u^T u = 1, \quad v^T v = 1, \quad w^T w = 1 \]

\[\frac{d\mathcal{L}}{d\sigma} = 0 \quad \Rightarrow \quad f(\mathcal{T})(u, v, w) = \sigma \]

\[\frac{d\mathcal{L}}{du} = 0 \quad \Rightarrow \quad \sigma f_1(\mathcal{T})(v, w) = (\sigma^2 + \lambda_1) u \]

and similar for \(\frac{d\mathcal{L}}{dv}, \frac{d\mathcal{L}}{dw} \). Premultiplying the last condition by \(u^T \), gives the second modulo \(\lambda_1 \), so \(\lambda_1 = 0 \), giving the singular value equation \(f_1(\mathcal{T})(v, w) = \sigma u \).
Hardness of Eigenvalue Computation

- Like rank-1 approximation, computing eigenvalues of singular values of a tensor is NP-hard, which can be demonstrated by considering the tensor bilinear feasibility problem\(^5\)
 - Restricting the tensor to be symmetric still leads to NP-hard problems, the largest singular vector will be the largest eigenvector a result of Banach\(^6\)

\[
\max_{x, y, z \in S^{n-1}} f^{(T)}(x, y, z) = \max_{x \in S^{n-1}} f^{(T)}(x, x, x)
\]

- The tensor bilinear feasibility problem associated with an order 3 tensor \(T\) is defined by the set of equations

\[
\begin{align*}
 f_1^{(T)}(v, w) &= 0, \\
 f_2^{(T)}(u, w) &= 0, \\
 f_3^{(T)}(u, v) &= 0
\end{align*}
\]

where we seek solutions \(u, v, w \neq 0\)

- This problem is a special case of the \(l^p\) singular value problem for any choice of \(p\) with \(\sigma = 0\)

\(^5\)C.J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard”, 2013

\(^6\)S. Banach, “On homogeneous polynomials in \(L^2\)”, 1938
Hardness of Eigenvalue Computation

- NP-hardness of the tensor bilinear feasibility problem can be demonstrated by reduction from 3-colorability
 - The 3-coloring problem seeks to find (if possible) an assignment of one of 3 colors to each vertex of a graph that is different from the color of any of its neighbors
 - We define an optimization problem over a set of variables \(x \in \mathbb{C}^n \) that describe the color (each will take on a power of the third root of unity), as well as auxiliary variables \(y \in \mathbb{C}^n, z \in \mathbb{C} \), then define the bilinear equations
 \[
 \forall i \in \{1, \ldots, n\}, \quad x_i y_i - z^2 = 0, \quad y_i z - x^2 = 0, \quad x_i z - y_i^2 = 0
 \]
 \[
 \forall i \in \{1, \ldots, n\}, \quad \sum_{(i,j) \in E} \frac{x_i^2 + x_i x_j + x_j^2}{x_i^3 - x_j^3} = 0
 \]
 - Assume (normalize) so that \(z = 1 \), then the first set of equations implies \(y_i = 1/x_i \) and further \(x_i^3 = 1 \), so labels are cubic roots of unity
 - For the second set of equations, we then must have \(x_i \neq x_j \) if \((i,j) \in E \)
The high-order power method (HOPM) can be used to compute the largest singular value. The algorithm updates factors in an alternating manner until convergence, with the ith factor matrix updated as:

1. $v^{(i)} = f_i(T)(u^{(1)}, \ldots, \hat{u}^{(i)}, \ldots, u^{(d)})$,
2. $\sigma = \|v^{(i)}\|_2$,
3. $u^{(i)}_{\text{new}} = v^{(i)}/\sigma$.

The algorithm can be derived from the Lagrangian and converges to a local minimum. Effective initialization can be achieved by HOSVD and the algorithm is equivalent to the rank-1 version of the HOOI procedure.

7 L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R_1, R_2, \ldots, R_n) approximation of higher-order tensors”, 2000
Power Method for Symmetric Eigenvalue Problems

- The HOPM algorithm can be adapted to symmetric tensors
 - The aforementioned Banach’s polynomial maximization theorem implies HOPM will converge to symmetric solution even if intermediate results are nonsymmetric
 - If symmetry is enforced on the iterates, so that
 \[v = f(\mathcal{T})(u) = f_i(\mathcal{T})(u, \ldots, u), \quad u^{(\text{new})} = v/\|v\|, \]
 the algorithm is no longer guaranteed to converge (it does if the tensor order is even and the underlying function is convex)
 - The shifted symmetric HOPM method\(^8\) alleviates this problem and enables convergence to other eigenvalues by adding a shift so as to minimize \(f(\mathcal{T})(u) + \alpha(u^Tu)^{d/2} \) for order \(d \) tensor \(\mathcal{T} \), yielding to updates such as
 \[v = f(\mathcal{T})(u) + \alpha u, \quad u^{(\text{new})} = v/\|v\|, \]

Perron-Frobenius Theorem for Tensor Eigenvalues

- The Perron-Frobenius theorem states that positive matrices have a unique real eigenvalue and the associated eigenvector is positive
 - Can be extended to nonnegative matrices so long as matrix in not reducible, i.e., cannot be put into the form
 \[PAP^{-1} = \begin{bmatrix} E & F \\ 0 & G \end{bmatrix} \]
 where \(P \) is a permutation matrix and \(G \) has at least 1 row
- This theorem is prominent in the study of nonsymmetric matrices
- Its applications include analysis of stochastic processes and algebraic graph theory
- Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem
 - If tensor is positive, the eigenvector with the largest eigenvalue is positive
 - A nonnegative order \(d \) tensor is irreducible if there is no \(d \)-dimensional blocking into \(2^d \) blocks that yields an off-diagonal zero block
 - For further properties, see LH Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005 and Q Yang, Y Yang, “Further results for Perron–Frobenius theorem for nonnegative tensors II”, 2011
TensorEigenvalues and Hypergraphs

- Matrix eigenvalues are prominent in algebraic graph theory
 - For an unweighted graph we typically consider a binary adjacency matrix A or the Laplacian matrix $D - A$ where D is a diagonal degree matrix
 - The eigenvector with the second smallest eigenvalue can be used to find a partitioning of vertices with a provably small cut value
 - Clustering can be done via constrained low-rank approximations methods
- Tensor eigenvalues can be used to understand partitioning/clustering properties of uniform hypergraphs
 - A uniform hypergraph $H = (V, E)$ is described by a set of vertices V and a set of hyperedges E, each of which is a subset of r vertices in E
 - Each hyperedge $(v_i, v_j, v_k) \in E$ may be associated with a tensor entry t_{ijk}
 - Laplacian-like choice of t_{ijk} yields symmetric and semidefinite tensor
 - The tensor must have a zero eigenvalue and the multiplicity of the zero eigenvalue is the number of components in the hypergraph
 - The second smallest eigenvalue lower bounds the minimum cut of H

9 J. Chang, Y. Chen, L. Qi, H. Yan, ”Hypergraph Clustering Using a New Laplacian Tensor with Applications in Image Processing”, 2019