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Conditioning
» Absolute Condition Number:
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» (Relative) Condition Number:



Posedness and Conditioning

» What is the condition number of an ill-posed problem?



Matrix Condition Number

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)

transformed by A: L= A
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» The matrix condition number bounds the worst-case amplification of error in

a matrix-vector product:
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Singular Value Decomposition
» The singular value decomposition (SVD)
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Visualization of Matrix Conditioning
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Linear Least Squares
» Find * = argming g ||Ax — b||s where A e R™*™:

» Giventhe SVD A = UXVT we have z* = VXIU” b, where X' contains the
—

At
reciprocal of all nonzeros in 3, and more generally 1 denotes pseudoinverse:



. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = ATb:
—

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm
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Solving the Normal Equations
» If A is full-rank, then AT A is symmetric positive definite (SPD):

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:



QR Factorization

» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR

» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™*™ has orthonormal columns and R is square and upper-triangular

» We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows



Computing the QR Factorization
» The Cholesky-QR algorithm uses the normal equations to obtain the QR

factorization
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» Orthogonalization-based methods are most efficient and stable for QR
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Eigenvalue Decomposition

» If a matrix A is diagonalizable, it has an eigenvalue decomposition

A=XDX"
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» A and B are similar, if there exist Z suchthat A = ZBZ !
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Similarity of Matrices

A ek B ot Sl {3 2

A_rZP;'Z," DA ke s g3
matrix similarity reduced form
SPD | orlhwgonel posi fiae
_ real symmetric | st Aeayomal QL ™
@;* G‘K\‘ A (Q\Qk\ ovw-"}v"*\ 4o ’At‘ﬁyvu’ Cin \
— P A Hermitian | by d'a=t detorr | ,-c.,‘|
ok s o AA" = A A normal et Shania ¥ ’(ﬂ‘ﬂr‘
BN real | , s qondd wpper - Hesabar  (desa, ()
diagonalizable ’ -
arbitrary




Rayleigh Quotient

» For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:
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Introduction to Krylov Subspace Methods ol A
» Krylov subspace methods work with information contained ilfthe n x k matrix
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Krylov Subspaces
> Given@k :@, we obtain an orthonormal basis for the Krylov subspace,
S [w(kx)
(4
v Kr(A,xo) = span(Qy) = {p(A)xo : deg(p) < k},
—
where p is any polynomial of degree less than k.
» The Krylov subspace includes the k — 1 approximate dominant eigenvectors
P« . generated by k£ — 1 steps of power iteration:
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Krylov Subspace Methods
> The k x k matrix Hy = QL AQ) minimizes ||AQx — QrHy|2:

» H, is upper-Hessenberg, because the companion matrix C,, is
upper-Hessenberg:



Rayleigh-Ritz Procedure

» The eigenvalues/eigenvectors of H, are the Ritz values/vectors:

» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Qy:



Low Rank Matrix Approximation
» Given a matrix A € R™*" seek rank » < m, n approximation

» Eckart-Young (optimal low-rank approximation by SVD) theorem



Rank Revealing Matrix Factorizations
» Computing the SVD

» QR with column pivoting



Orthogonal Iteration

» For sparse matrices, QR factorization creates fill, so must revert to iterative
methods

» Orthogonal iteration interleaves deflation and power iteration



Randomized SVD

» Orthogonal iteration for SVD can also be viewed as a randomized algorithm



Generalized Nystrom Algorithm

» The generalized Nystrom algorithm provides an efficient way of computing a
sketched low-rank factorization



Multidimensional Optimization
» Minimize f(x)

> Quadratic optimization f(z) = 27 Az — bTx



Basic Multidimensional Optimization Methods
» Steepest descent: minimize f in the direction of the negative gradient:

» Given quadratic optimization problem f(x) = %:cTA:c + bTx where A is
symmetric positive definite, the error e}, = x;,, — =* satisfies

lex+1lla =
» When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.
» Convergence rate depends on the conditioning of A, since



Gradient Methods with Extrapolation

» We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction x;, — x;,_1):

» The heavy ball method, which uses constant «;, = o and 5, = 3, achieves
better convergence than steepest descent:



Conjugate Gradient Method

» The conjugate gradient method is capable of making the optimal (for a
quadratic objective) choice of o, and 3, at each iteration of an extrapolation
method:

» Parallel tangents implementation of the method proceeds as follows



Krylov Optimization

» Conjugate gradient (CG) finds the minimizer of f(z) = 12”7 Az — b"x (which
satisfies optimality condition Ax = b) within the Krylov subspace of A:



CG and Krylov Optimization

The solution at the kth step, yi. = ||b||2T} ‘e; is obtained by CG from yj..; with a
single matrix-vector product with A and vector operations with O(n) cost



Preconditioning

» Convergence of iterative methods for Az = b depends on x(A), the goal of a
preconditioner M is to obtain x by solving

M 'Az = M'b
with s(M 1 A) < k(A)

» Common preconditioners select parts of A or perform inexact factorization



Conjugate Gradient Convergence Analysis

» In previous discussion, we assumed K, is invertible, which may not be the
case if A has m < n distinct eigenvalues, however, in exact arithmetic CG
converges in m — 1 iterations’

'This derivation follows Applied Numerical Linear Algebra by James Demmel, Section 6.6.4



Conjugate Gradient Convergence Analysis (II)
» Using z = pp_1(A)Ax, we can simplify ¢(2) = (x — 2)T A(x — 2) as

» We can bound the objective based on the eigenvalues of A = QAQT” using
the identity p(A) = Qp(A)Q7,



Conjugate Gradient Convergence Analysis (III)

» Using our bound on the square of the residual norm ¢(z), we can see why CG
converges after m — 1 iterations if there are only m < n distinct eigenvalues

» To see that the residual goes to 0, we find a suitable polynomial in Q,, (the
set of polynomials ¢,, of degree m with ¢,,,(0) = 1)



Round-off Error in Conjugate Gradient

» CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

» Due to round-off CG may stagnate / have plateaus in convergence



Graph and Matrix Duality

» graphs have have a natural correspondence with sparse matrices

» matrix-based representations of graphs can be used to devise algorithms



Graph Partitioning from Eigenvectors

» The Laplacian matrix provides a model of interactions on a graph that is
useful in many contexts

» The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler
vector), gives a good partitioning of the graph



Newton’s Method

» Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f:



Nonlinear Least Squares
» An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function f.(t) so that fg(t;) ~ v;:

» We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:



Gauss-Newton Method
» The Hessian for nonlinear least squares problems has the form:

» The Gauss-Newton method is Newton iteration with an approximate Hessian:



