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Conditioning
§ Absolute Condition Number:

§ (Relative) Condition Number:



Posedness and Conditioning
§ What is the condition number of an ill-posed problem?



Matrix Condition Number
§ The matrix condition number κpAq is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

§ The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Singular Value Decomposition
§ The singular value decomposition (SVD)

§ Condition number in terms of singular values



Visualization of Matrix Conditioning





Linear Least Squares
§ Find x‹ “ argminxPRn ||Ax ´ b||2 where A P Rmˆn:

§ Given the SVD A “ UΣV T we have x‹ “ V Σ:UTlooomooon
A:

b, where Σ: contains the

reciprocal of all nonzeros in Σ, and more generally : denotes pseudoinverse:



Normal Equations
§ Normal equations are given by solving ATAx “ ATb:

§ However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations



Solving the Normal Equations
§ If A is full-rank, then ATA is symmetric positive definite (SPD):

§ Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:



QR Factorization
§ If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A “ QR

§ A reduced QR factorization (unique part of general QR) is defined so that
Q P Rmˆn has orthonormal columns and R is square and upper-triangular

§ We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows



Computing the QR Factorization
§ The Cholesky-QR algorithm uses the normal equations to obtain the QR
factorization

§ Orthogonalization-based methods are most e�cient and stable for QR
factorization of dense matrices



Eigenvalue Decomposition
§ If a matrix A is diagonalizable, it has an eigenvalue decomposition

§ A and B are similar, if there exist Z such that A “ ZBZ´1



Similarity of Matrices
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Rayleigh Quotient
§ For any vector x that is close to an eigenvector, the Rayleigh quotient
provides an estimate of the associated eigenvalue of A:







Introduction to Krylov Subspace Methods
§ Krylov subspace methods work with information contained in the nˆ k matrix

Kk “ “
x0 Ax0 ¨ ¨ ¨ Ak´1x0

‰

§ A is similar to companion matrix C “ K´1
n AKn:





Krylov Subspaces
§ Given QkRk “ Kk, we obtain an orthonormal basis for the Krylov subspace,

KkpA,x0q “ spanpQkq “ tppAqx0 : degppq ă ku,
where p is any polynomial of degree less than k.

§ The Krylov subspace includes the k ´ 1 approximate dominant eigenvectors
generated by k ´ 1 steps of power iteration:



Krylov Subspace Methods
§ The k ˆ k matrix Hk “ QT

kAQk minimizes ||AQk ´ QkHk||2:

§ Hk is upper-Hessenberg, because the companion matrix Cn is
upper-Hessenberg:



Rayleigh-Ritz Procedure

§ The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

§ The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only Hk and Qk:



Low Rank Matrix Approximation
§ Given a matrix A P Rmˆn seek rank r ă m,n approximation

§ Eckart-Young (optimal low-rank approximation by SVD) theorem



Rank Revealing Matrix Factorizations
§ Computing the SVD

§ QR with column pivoting



Orthogonal Iteration
§ For sparse matrices, QR factorization creates fill, so must revert to iterative
methods

§ Orthogonal iteration interleaves deflation and power iteration



Randomized SVD
§ Orthogonal iteration for SVD can also be viewed as a randomized algorithm



Generalized Nyström Algorithm
§ The generalized Nyström algorithm provides an e�cient way of computing a
sketched low-rank factorization



Multidimensional Optimization
§ Minimize fpxq

§ Quadratic optimization fpxq “ 1
2x

TAx ´ bTx



Basic Multidimensional Optimization Methods
§ Steepest descent: minimize f in the direction of the negative gradient:

§ Given quadratic optimization problem fpxq “ 1
2x

TAx ` bTx where A is
symmetric positive definite, the error ek “ xk ´ x˚ satisfies

||ek`1||A “
§ When su�ciently close to a local minima, general nonlinear optimization

problems are described by such an SPD quadratic problem.
§ Convergence rate depends on the conditioning of A, since



Gradient Methods with Extrapolation
§ We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk ´ xk´1):

§ The heavy ball method, which uses constant αk “ α and βk “ β, achieves
better convergence than steepest descent:



Conjugate Gradient Method
§ The conjugate gradient method is capable of making the optimal (for a
quadratic objective) choice of αk and βk at each iteration of an extrapolation
method:

§ Parallel tangents implementation of the method proceeds as follows



Krylov Optimization
§ Conjugate gradient (CG) finds the minimizer of fpxq “ 1

2x
TAx ´ bTx (which

satisfies optimality condition Ax “ b) within the Krylov subspace of A:



CG and Krylov Optimization
The solution at the kth step, yk “ ||b||2T´1

k e1 is obtained by CG from yk`1 with a
single matrix-vector product with A and vector operations with Opnq cost



Preconditioning
§ Convergence of iterative methods for Ax “ b depends on κpAq, the goal of a
preconditioner M is to obtain x by solving

M´1Ax “ M´1b

with κpM´1Aq ă κpAq

§ Common preconditioners select parts of A or perform inexact factorization



Conjugate Gradient Convergence Analysis
§ In previous discussion, we assumed Kn is invertible, which may not be the
case if A has m ă n distinct eigenvalues, however, in exact arithmetic CG
converges in m ´ 1 iterations1

1This derivation follows Applied Numerical Linear Algebra by James Demmel, Section 6.6.4



Conjugate Gradient Convergence Analysis (II)
§ Using z “ ρk´1pAqAx, we can simplify φpzq “ px ´ zqTApx ´ zq as

§ We can bound the objective based on the eigenvalues of A “ QΛQT using
the identity ppAq “ QppΛqQT ,



Conjugate Gradient Convergence Analysis (III)
§ Using our bound on the square of the residual norm φpzq, we can see why CG
converges after m ´ 1 iterations if there are only m ă n distinct eigenvalues

§ To see that the residual goes to 0, we find a suitable polynomial in Qm (the
set of polynomials qm of degree m with qmp0q “ 1)



Round-o� Error in Conjugate Gradient
§ CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

§ Due to round-o� CG may stagnate / have plateaus in convergence



Graph and Matrix Duality
§ graphs have have a natural correspondence with sparse matrices

§ matrix-based representations of graphs can be used to devise algorithms



Graph Partitioning from Eigenvectors
§ The Laplacian matrix provides a model of interactions on a graph that is
useful in many contexts

§ The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler
vector), gives a good partitioning of the graph



Newton’s Method
§ Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f :



Nonlinear Least Squares
§ An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function fxptq so that fxptiq « yi:

§ We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:



Gauss-Newton Method
§ The Hessian for nonlinear least squares problems has the form:

§ The Gauss-Newtonmethod is Newton iteration with an approximate Hessian:


