Conditioning

- Absolute Condition Number:

- (Relative) Condition Number:
Posedness and Conditioning

- What is the condition number of an ill-posed problem?
Matrix Condition Number

- The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball (norm-1 vectors) transformed by A:

- The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:
Singular Value Decomposition

- The singular value decomposition (SVD)

- Condition number in terms of singular values
Visualization of Matrix Conditioning

\[\{ x : x \in \mathbb{R}^2, \| x \|_2 = 1 \} \xrightarrow{A} \{ Ax : x \in \mathbb{R}^2, \| x \|_2 = 1 \} \]

\[\kappa(A) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} \]

\[A = U \begin{bmatrix} \sigma_{\text{max}} \\ \sigma_{\text{min}} \end{bmatrix} V^T \]

\[\| A \|_2 = \sigma_{\text{max}} \]

\[1/\| A^{-1} \|_2 = \sigma_{\text{min}} \]
Linear Least Squares

- Find $x^* = \arg\min_{x \in \mathbb{R}^n} \|Ax - b\|_2$ where $A \in \mathbb{R}^{m \times n}$:

- Given the SVD $A = U\Sigma V^T$ we have $x^* = V\Sigma^\dagger U^T b$, where Σ^\dagger contains the reciprocal of all nonzeros in Σ, and more generally \dagger denotes pseudoinverse:
Normal Equations

- *Normal equations* are given by solving \(A^T A x = A^T b \):

- However, solving the normal equations is a more ill-conditioned problem than the original least squares algorithm.
If A is full-rank, then $A^T A$ is symmetric positive definite (SPD):

Since $A^T A$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:
QR Factorization

- If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A = QR$

- A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular.

- We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows
Computing the QR Factorization

- The Cholesky-QR algorithm uses the normal equations to obtain the QR factorization

- Orthogonalization-based methods are most efficient and stable for QR factorization of dense matrices
Eigenvalue Decomposition

- If a matrix A is diagonalizable, it has an eigenvalue decomposition.

- A and B are similar, if there exist Z such that $A = ZBZ^{-1}$.
Similarity of Matrices

<table>
<thead>
<tr>
<th>matrix</th>
<th>similarity</th>
<th>reduced form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real symmetric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hermitian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diagonalizable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arbitrary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rayleigh Quotient

- For any vector x that is close to an eigenvector, the Rayleigh quotient provides an estimate of the associated eigenvalue of A:

[Rayleigh Quotient equation]
Krylov subspace methods work with information contained in the $n \times k$ matrix

$$K_k = \begin{bmatrix} x_0 & Ax_0 & \cdots & A^{k-1}x_0 \end{bmatrix}$$

- A is similar to companion matrix $C = K_n^{-1}AK_n$.
Krylov Subspaces

- Given $Q_k R_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$K_k(A, x_0) = \text{span}(Q_k) = \{ p(A)x_0 : \text{deg}(p) < k \},$$

where p is any polynomial of degree less than k.

- The Krylov subspace includes the $k - 1$ approximate dominant eigenvectors generated by $k - 1$ steps of power iteration:
The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $\|A Q_k - Q_k H_k\|_2$:

H_k is upper-Hessenberg, because the companion matrix C_n is upper-Hessenberg:
Rayleigh-Ritz Procedure

- The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

- The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k:
Low Rank Matrix Approximation

- Given a matrix $A \in \mathbb{R}^{m \times n}$ seek rank $r < m, n$ approximation

- Eckart-Young (optimal low-rank approximation by SVD) theorem
Rank Revealing Matrix Factorizations

- Computing the SVD

- QR with column pivoting
Orthogonal Iteration

- For sparse matrices, QR factorization creates fill, so must revert to iterative methods

- Orthogonal iteration interleaves deflation and power iteration
Randomized SVD

- Orthogonal iteration for SVD can also be viewed as a randomized algorithm
The generalized Nyström algorithm provides an efficient way of computing a sketched low-rank factorization.
Multidimensional Optimization

- Minimize $f(x)$

- Quadratic optimization $f(x) = \frac{1}{2} x^T A x - b^T x$
Basic Multidimensional Optimization Methods

- Steepest descent: minimize f in the direction of the negative gradient:

- Given quadratic optimization problem $f(x) = \frac{1}{2} x^T A x + b^T x$ where A is symmetric positive definite, the error $e_k = x_k - x^*$ satisfies

 $$
 \|e_{k+1}\|_A = \quad
 $$

- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- Convergence rate depends on the conditioning of A, since
Gradient Methods with Extrapolation

- We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

- The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:
Conjugate Gradient Method

- The *conjugate gradient method* is capable of making the optimal (for a quadratic objective) choice of α_k and β_k at each iteration of an extrapolation method:

- *Parallel tangents* implementation of the method proceeds as follows
Conjugate gradient (CG) finds the minimizer of $f(x) = \frac{1}{2} x^T A x - b^T x$ (which satisfies optimality condition $A x = b$) within the Krylov subspace of A:
The solution at the kth step, $y_k = \|b\|_2 T_k^{-1} e_1$, is obtained by CG from y_{k+1} with a single matrix-vector product with A and vector operations with $O(n)$ cost.

CG for QPs / lin-sys

$$f(x) = \frac{1}{2} x^T A x - x^T b$$

$$\nabla f(x) = 0 \quad \Rightarrow \quad A x = b$$

$$r = A x - b$$

$\{b, A b, A^2 b, \ldots, A^{k-1} b\}$
Preconditioning

- Convergence of iterative methods for $Ax = b$ depends on $\kappa(A)$, the goal of a preconditioner M is to obtain x by solving

$$M^{-1}Ax = M^{-1}b$$

with $\kappa(M^{-1}A) < \kappa(A)$

- Common preconditioners select parts of A or perform inexact factorization

$$\|e_{rel}\|_A = \frac{\|e\|}{\sqrt{\|x\|_A}}$$

goal: reduce # of CG iterations to achieve accuracy

$$A = \begin{bmatrix} \begin{bmatrix} \end{bmatrix} + \begin{bmatrix} \end{bmatrix} \end{bmatrix}$$
\[A = X D X^{-1} \]
\[A A = X D X^{-1} X D X^{-1} = X D^2 X^{-1} \]
\[A^k = X D^k X^{-1} \]
\[\rho(A) = I + 2A - A^m = X \rho(D) X^{-1} \]
\[\rho(x) = 1 + 2x - x^4 \]

\[\mathcal{R}_{k-1}(A, b) = \text{span} \{ b, A b, \ldots, A^{k-1} b \} = \sum_{\rho \in \Pi_{k-1}} \frac{\rho(A) b}{\rho k} \]
In previous discussion, we assumed K_n is invertible, which may not be the case if A has $m < n$ distinct eigenvalues, however, in exact arithmetic CG converges in $m - 1$ iterations\(^1\)

\[f(x) = \frac{1}{2} x^T A x + \frac{1}{2} b^T b \]

This derivation follows *Applied Numerical Linear Algebra* by James Demmel, Section 6.6.4
\[\| x \|_2^2 = x^T A x \]

\[\| x \|_A^2 = x^T \sqrt{A} \sqrt{A} x \]

When \(A \) is spd then \(\sqrt{A} = A^{1/2} = \mathbf{x} \mathbf{x}^T \)

2-norm:

\[\| V Q Q^T \| = \| V \|_2 \]

1-norm:

\[\| Q \|_1 = \| Q \|_2 \]

\[\| x + y \|_A \leq \| x \|_A + \| y \|_A \]
Using $z = \rho_{k-1}(A)Ax$, we can simplify $\phi(z) = (x - z)^T A (x - z)$ as

$$
\phi(z) = (x - \rho_{k-1}(A)Ax)^T A (x - \rho_{k-1}(A)Ax) = (x - q_k(A)x)^T A (x - q_k(A)x)
$$

We can bound the objective based on the eigenvalues of $A = Q\Lambda Q^T$ using the identity $p(A) = Qp(\Lambda)Q^T$,}

$$
\phi(z) \leq \max_{\lambda \in \lambda(A)} \left(q_k(\lambda)^2 \right) x^T \Lambda \Lambda^T x = \max_{\lambda \in \lambda(A)} \left(q_k(\lambda)^2 \right) x^T \Lambda \Lambda^T x
$$
When \(\exists q_m \in \mathbb{P}_m \) with \(0 \leq q_m \) or
\[
q_m(x) = \prod_{i=1}^{m} (x - \lambda_i) / \prod_{i=1}^{m} \lambda_i
\]
Conjugate Gradient Convergence Analysis (III)

Using our bound on the square of the residual norm \(\phi(z) \), we can see why CG converges after \(m - 1 \) iterations if there are only \(m < n \) distinct eigenvalues.

\[
E(x_k) \leq \min_{q_k \in Q_m} \max_{\lambda_i \in \lambda} |q_k(\lambda_i)|^2 \leq \min_{q_k \in Q_m} \max_{\lambda_i \in \lambda} |q_k(\lambda_i)|^2
\]

\[
\|r_k\|_{A^{-1}} = \sqrt{E(x_k)} \quad \|r_k\|_{A^{-1}} \leq \min_{q_k \in Q_m} \max_{\lambda_i \in \lambda} |q_k(\lambda_i)|^2
\]

To see that the residual goes to 0, we find a suitable polynomial in \(Q_m \) (the set of polynomials \(q_m \) of degree \(m \) with \(q_m(0) = 1 \)).

\[
\|r\| = 0 \iff f(\gamma) = 0 \quad A\gamma = b
\]
Round-off Error in Conjugate Gradient

- CG provides strong convergence guarantees for SPD matrices in exact arithmetic

Due to round-off, not so exact.

- Due to round-off CG may stagnate / have plateaus in convergence

as CG on a larger matrix, whose eigenvalues are clustered around those of A.
develop additional zeros
Graph and Matrix Duality

- Graphs have a natural correspondence with sparse matrices.

- Matrix-based representations of graphs can be used to devise algorithms.
 - Combinatorial algorithms (BFS, SSSP, BF)
 - Semirings $(\min, +)$, $(+, \cdot)$

\[
w = A \circ v \Rightarrow w_i = \min_{j \in \mathcal{N}(i)} a_{ij} + v_j
\]
\[
D = I \circ (A \circ (A \circ A)) \circ \ldots \circ (A^{\circ n}) \Rightarrow d_{ij} = \min_{k \in \mathcal{E}, \ldots, n} w_{(i,k)} + \ldots + w_{(n,j)}
\]
Graph Partitioning from Eigenvectors

- The Laplacian matrix provides a model of interactions on a graph that is useful in many contexts

\[L = \text{Laplacian} = D - A \]

- The second-smallest-eigenvalue eigenvector of the Laplacian (the Fiedler vector), gives a good partitioning of the graph

\[v = L \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

\[v_1 = d_1 - d_1 = 0 \]
\[p_A(u) = \frac{\sum_{A \in U} \sum_{V \in V} e^{u(V)}}{\sum_{V \in V} e^{u(V)}} \]
Newton’s Method

- Newton’s method in n dimensions is given by finding minima of n-dimensional quadratic approximation using the gradient and Hessian of f:
Nonlinear Least Squares

- An important special case of multidimensional optimization is **nonlinear least squares**, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

- We can cast nonlinear least squares as an optimization problem to minimize residual error and solve it by Newton’s method:
Gauss-Newton Method

- The Hessian for nonlinear least squares problems has the form:

- The *Gauss-Newton* method is Newton iteration with an approximate Hessian:
Constrained Optimization Problems

- We now return to the general case of constrained optimization problems:

\[
\min_{x} f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

- Generally, we will seek to reduce constrained optimization problems to a series of simpler optimization problems:
Lagrangian Duality

- The Lagrangian function with constraints $g(x) = 0$ and $h(x) \leq 0$ is

- The Lagrangian dual problem is an unconstrained optimization problem:

$$\max_{\lambda} q(\lambda), \quad q(\lambda) = \begin{cases} \min_{x} \mathcal{L}(x, \lambda) & \text{if } \lambda \geq 0 \\ -\infty & \text{otherwise} \end{cases}$$

The unconstrained optimality condition $\nabla q(\lambda^*) = 0$, implies
Sequential Quadratic Programming

- *Sequential quadratic programming (SQP)* reduces a nonlinear equality constrained problem to a sequence of constrained quadratic programs via a Taylor expansion of the Lagrangian function $\mathcal{L}_f(x, \lambda) = f(x) + \lambda^T g(x)$:

- SQP ignores the constant term $\mathcal{L}_f(x_k, \lambda_k)$ and minimizes s while treating δ as a Lagrange multiplier:
Barrier functions provide an effective way of working with inequality constraints $h(\mathbf{x}) \leq 0$:

Interior point methods additionally incorporate Lagrangian optimization