Conditioning

- Absolute Condition Number:

- (Relative) Condition Number:
Posedness and Conditioning

- What is the condition number of an ill-posed problem?
Matrix Condition Number

- The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball (norm-1 vectors) transformed by A:

 $\frac{\text{max}}{\text{min}}$

- The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:
Singular Value Decomposition

- The singular value decomposition (SVD)

- Condition number in terms of singular values
Visualization of Matrix Conditioning

\[\{ x : x \in \mathbb{R}^2, \|x\|_2 = 1 \} \xrightarrow{A} \{ Ax : x \in \mathbb{R}^2, \|x\|_2 = 1 \} \]

\[\kappa(A) = \sigma_{\text{max}} / \sigma_{\text{min}} \]

\[A = U \begin{bmatrix} \sigma_{\text{max}} & 0 \\ 0 & \sigma_{\text{min}} \end{bmatrix} V^T \]

\[\|A\|_2 = \sigma_{\text{max}} \]

\[1 / \|A^{-1}\|_2 = \sigma_{\text{min}} \]
Linear Least Squares

- Find $x^* = \arg\min_{x \in \mathbb{R}^n} \|Ax - b\|_2$ where $A \in \mathbb{R}^{m \times n}$:

- Given the SVD $A = U\Sigma V^T$ we have $x^* = V\Sigma^{\dagger}U^T b$, where Σ^{\dagger} contains the reciprocal of all nonzeros in Σ, and more generally \dagger denotes pseudoinverse:
Normal Equations

- Normal equations are given by solving $A^T A x = A^T b$:

- However, solving the normal equations is a more ill-conditioned problem than the original least squares algorithm.
Solving the Normal Equations

- If A is full-rank, then $A^T A$ is symmetric positive definite (SPD):

- Since $A^T A$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:
QR Factorization

- If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A = QR$

- A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular

- We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows
Computing the QR Factorization

- The Cholesky-QR algorithm uses the normal equations to obtain the QR factorization

- Orthogonalization-based methods are most efficient and stable for QR factorization of dense matrices
Eigenvalue Decomposition

- If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

- A and B are *similar*, if there exist Z such that $A = ZBZ^{-1}$
Similarity of Matrices

<table>
<thead>
<tr>
<th>matrix</th>
<th>similarity</th>
<th>reduced form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real symmetric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hermitian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>diagonalizable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arbitrary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rayleigh Quotient

- For any vector x that is close to an eigenvector, the Rayleigh quotient provides an estimate of the associated eigenvalue of A:
Krylov subspace methods work with information contained in the $n \times k$ matrix

\[
K_k = \begin{bmatrix}
 x_0 & Ax_0 & \cdots & A^{k-1}x_0
\end{bmatrix}
\]

A is similar to companion matrix $C = K_n^{-1}AK_n$.
Krylov Subspaces

- Given $Q_k R_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$K_k(A, x_0) = \text{span}(Q_k) = \{p(A)x_0 : \deg(p) < k\},$$

where p is any polynomial of degree less than k.

- The Krylov subspace includes the $k-1$ approximate dominant eigenvectors generated by $k-1$ steps of power iteration:
Krylov Subspace Methods

- The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $\|AQ_k - Q_k H_k\|_2$:

- H_k is upper-Hessenberg, because the companion matrix C_n is upper-Hessenberg:
Rayleigh-Ritz Procedure

- The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

- The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k:
Low Rank Matrix Approximation

- Given a matrix $A \in \mathbb{R}^{m \times n}$ seek rank $r < m, n$ approximation

- Eckart-Young (optimal low-rank approximation by SVD) theorem
Rank Revealing Matrix Factorizations

- Computing the SVD

\[u \leq v^T \]

- QR with column pivoting

\[AP = QR \]

\[Q^T AP = \begin{bmatrix} 0 \\ \end{bmatrix} \]
Orthogonal Iteration

- For sparse matrices, QR factorization creates fill, so must revert to iterative methods

\[Q_{k+1} \leftarrow QR(AQ_k) \]

- Orthogonal iteration interleaves deflation and power iteration
Randomized SVD

- Orthogonal iteration for SVD can also be viewed as a randomized algorithm
Generalized Nyström Algorithm

- The generalized Nyström algorithm provides an efficient way of computing a sketched low-rank factorization.

\[S = \text{sketch matrix, } n \times k \]

- Gaussian random
- SRFT
- \(S = \text{sketch data} \)
- Efficient if sketched data
- \(\text{for sparse } A, \text{ want to sample, Count sketch} \)
- \(S_1, S_2 \)
- \(A S_2^T (S_1 A S_2^T)^+ S_1 A = \tilde{A} \)

\[O(\frac{n^2}{k}) \quad \text{and } O(\frac{n}{k \log n}) \]
Multidimensional Optimization

- Minimize $f(x)$
 - $x \in \mathbb{R}^n$, $f: \mathbb{R}^n \rightarrow \mathbb{R}$
 - constrained or unconstrained
 - equality
 - inequality

- Quadratic optimization
 - $f(x) = \frac{1}{2} x^T A x - b^T x$
 - $\nabla f(x^*) = 0$
 - $A x = b$
 - A is SPD

- Constrained & nonlinear
 - Lagrange / interior point
 - nonlinear optimization
 - Newton's method

- Unconstrained
 - linear solve
 - unconstrained optimization
 - quadratic optimization
Basic Multidimensional Optimization Methods

- Steepest descent: minimize f in the direction of the negative gradient:

- Given quadratic optimization problem $f(x) = \frac{1}{2}x^T Ax + b^T x$ where A is symmetric positive definite, the error $e_k = x_k - x^*$ satisfies

 $$\|e_{k+1}\|_A = e_{k+1}^T A e_{k+1} = \|e_k\|_A \frac{k e_k^T A^{-1} e_k}{k (e_k^T A e_k) + 1}$$

- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.

- Convergence rate depends on the conditioning of A, since...
Gradient Methods with Extrapolation

- We can improve the constant in the linear rate of convergence of steepest descent by leveraging **extrapolation methods**, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

 $x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$

- The **heavy ball method**, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

 $\|e_{k+1}\|_A = \|e_k\|_A \frac{\sqrt{\text{tr}(A^2)-1}}{\text{tr}(A)+1}$

 Nesterov's method
The *conjugate gradient method* is capable of making the optimal (for a quadratic objective) choice of α_k and β_k at each iteration of an extrapolation method: if A is $n \times n$, CG converges in a double

- $x_{k+1} - x_k$ is A-orthogonal to prior directions.

Parallel tangents implementation of the method proceeds as follows

1st minimize $x_k + \alpha \nabla f(x_k) \rightarrow \tilde{x}_k$

2nd minimize $x_{k-1} + \beta (\tilde{x}_k - x_{k-1})$
Krylov Optimization

- Conjugate gradient (CG) finds the minimizer of \(f(x) = \frac{1}{2} x^T A x - b^T x \) (which satisfies optimality condition \(Ax = b \)) within the Krylov subspace of \(A \):

\[
\min_{x \in \mathbb{R}^n} f(x) = \min_{y \in \mathbb{R}^n} \frac{1}{2} y^T Q_k^T A Q_k y - y Q_k^T b
\]

\[
\begin{align*}
\Delta e(y) &= Q_k^T A Q_k y - b^T_k
\end{align*}
\]

\[
T_k y = e, \|e\|_2 = \varepsilon(y)
\]
CG and Krylov Optimization

The solution at the kth step, $y_k = \|b\|_2 T_k^{-1} e_1$ is obtained by CG from y_{k+1} with a single matrix-vector product with A and vector operations with $O(n)$ cost.

\[
T_{k+1} = \begin{bmatrix} T_k \end{bmatrix}
\]

\[
y_{k+1} = \frac{1}{\|b\|_2} T_k^{-1} e_1
\]

\[
\text{ran}(T_{k+1} - T_k) \supseteq T_k \begin{bmatrix} (k+1, k+1) \end{bmatrix} = 2
\]

\[
(M - uu^T)^{-1} = \begin{bmatrix} M' + \frac{M' uu^T M'}{1 - u^T M' u} \end{bmatrix} \quad O(k)
\]
Preconditioning

- Convergence of iterative methods for $Ax = b$ depends on $\kappa(A)$, the goal of a preconditioner M is to obtain x by solving

$$M^{-1}Ax = M^{-1}b$$

with $\kappa(M^{-1}A) < \kappa(A)$

- Often, pick $M \approx A$ so that M^{-1} is easy to obtain/apply

- Common preconditioners select parts of A or perform inexact factorization

 - incomplete LU (LU without full)

 - never form $M^{-1}A$
 - only apply A and solve with M
Conjugate Gradient Convergence Analysis

- In previous discussion, we assumed K_n is invertible, which may not be the case if A has $m < n$ distinct eigenvalues, however, in exact arithmetic CG converges in $m - 1$ iterations\(^1\)

\(^1\)This derivation follows *Applied Numerical Linear Algebra* by James Demmel, Section 6.6.4
Conjugate Gradient Convergence Analysis (II)

- Using \(z = \rho_{k-1}(A)Ax \), we can simplify \(\phi(z) = (x - z)^T A (x - z) \) as

- We can bound the objective based on the eigenvalues of \(A = Q\Lambda Q^T \) using the identity \(p(A) = Qp(\Lambda)Q^T \),
Conjugate Gradient Convergence Analysis (III)

- Using our bound on the square of the residual norm $\phi(z)$, we can see why CG converges after $m - 1$ iterations if there are only $m < n$ distinct eigenvalues.

- To see that the residual goes to 0, we find a suitable polynomial in Q_m (the set of polynomials q_m of degree m with $q_m(0) = 1$).
Round-off Error in Conjugate Gradient

- CG provides strong convergence guarantees for SPD matrices in exact arithmetic

- Due to round-off CG may stagnate / have plateaus in convergence
Newton’s Method

- Newton’s method in \(n \) dimensions is given by finding minima of \(n \)-dimensional quadratic approximation using the gradient and Hessian of \(f \):
Nonlinear Least Squares

- An important special case of multidimensional optimization is *nonlinear least squares*, the problem of fitting a nonlinear function $f_x(t)$ so that $f_x(t_i) \approx y_i$:

- We can cast nonlinear least squares as an optimization problem to minimize residual error and solve it by Newton’s method:
Gauss-Newton Method

- The Hessian for nonlinear least squares problems has the form:

- The *Gauss-Newton* method is Newton iteration with an approximate Hessian:
Constrained Optimization Problems

- We now return to the general case of constrained optimization problems:

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

- Generally, we will seek to reduce constrained optimization problems to a series of simpler optimization problems:
Lagrangian Duality

- The Lagrangian function with constraints $g(x) = 0$ and $h(x) \leq 0$ is

$$\max_{\lambda} q(\lambda), \quad q(\lambda) = \begin{cases} \min_x \mathcal{L}(x, \lambda) & \text{if } \lambda \geq 0 \\ -\infty & \text{otherwise} \end{cases}$$

The unconstrained optimality condition $\nabla q(\lambda^*) = 0$, implies
Sequential Quadratic Programming

- **Sequential quadratic programming (SQP)** reduces a nonlinear equality constrained problem to a sequence of constrained quadratic programs via a Taylor expansion of the Lagrangian function $\mathcal{L}_f(x, \lambda) = f(x) + \lambda^T g(x)$:

- SQP ignores the constant term $\mathcal{L}_f(x_k, \lambda_k)$ and minimizes s while treating δ as a Lagrange multiplier:
Interior Point Methods

- Barrier functions provide an effective way of working with inequality constraints $h(x) \leq 0$:

- Interior point methods additionally incorporate Lagrangian optimization