CS 598 EVS: Tensor Computations Basics of Tensor Computations

Edgar Solomonik

University of Illinois at Urbana-Champaign

Tensors

A tensor is a collection of elements

A few examples of tensors are

Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements

Matrices and Tensors as Operators and Multilinear Forms

What is a matrix?

What is a tensor?

Tensor Transposition

For tensors of order ≥ 3 , there is more than one way to transpose modes

Tensor Symmetry

We say a tensor is *symmetric* if $\forall j, k \in \{1, \dots, d\}$

A tensor is *antisymmetric* (skew-symmetric) if $\forall j, k \in \{1, ..., d\}$

A tensor is *partially-symmetric* if such index interchanges are restricted to be within disjoint subsets of $\{1, \ldots, d\}$, e.g., if the subsets for d = 4 and $\{1, 2\}$ and $\{3, 4\}$, then

Tensor Sparsity

We say a tensor \mathcal{T} is *diagonal* if for some v, If most of the tensor entries are

zeros, the tensor is *sparse*

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps $f: V_f \to W_f$ and $g: V_g \to W_g$ $A \in \mathbb{R}^{m_A \times m_A}$ $B \in \mathbb{R}^{m_A \times m_B}$ $A \times B = \top \in \mathbb{R}^{m_A \times m_B \times m_B}$ Tensors can be used to represent multilinear maps and have a corresponding definition for a tensor product

The *Kronecker product* between two matrices $A \in \mathbb{R}^{m_1 \times m_2}$, $B \in \mathbb{R}^{n_1 \times n_2}$

$$A \otimes B = C$$

 $b_{13} \otimes b_{14} = C_{1+kn_{1}, 3+kn_{2}}$

$$A \otimes B^{\pm}$$

$$A \otimes$$

Tensor Contractions

A *tensor contraction* multiplies elements of two tensors and computes partial sums to produce a third, in a fashion expressible by pairing up modes of different tensors, defining *einsum* (term stems from Einstein's summation convention)

	tensor contraction	einsum	diagram			
C= A*B	inner product	c=a;b;	0= 0-0			
	outer product	Cissaibs	R=99			
	pointwise product	c; za; b;	9; = 2,9	3		
	Hadamard product	Ciscalibij	q= aro			
	matrix multiplication	Cissaikbus	P = Q-Q			
	batched matmul.	Cijk=airkbeik	10 = 9 = 9;			
	tensor times matrix	Cijle = a i se	$p_{1}^{2} = p_{1}^{2} - q_{1}^{2}$			
The terms (contraction) and (cincum) are also often used when more than two						

The terms 'contraction' and 'einsum' are also often used when more than two operands are involved

General Tensor Contractions

Given tensor \mathcal{U} of order $\underline{s+v}$ and \mathcal{V} of order v+t, a tensor contraction summing over v modes can be written as

Unfolding the tensors reduces the tensor contraction to matrix multiplication

w= ū v

Properties of Einsums

AB = BA

C5 Z aik bis

Given an elementwise expression containing a product of tensors, the operands commute

A contraction can be succinctly described by a tensor diagram

Zbirjaile

Matrix-style Notation for Tensor Contractions

 $\leq (\lambda \times_k M)$

The <u>tensor times matrix</u> contraction along the *m*th mode of \mathcal{U} to produce \mathcal{V} is expressed as follows $\mathcal{T} \in \mathbb{R}^{\mathcal{V}}$

The Khatri-Rao product of two matrices $U \in \mathbb{R}^{m \times k}$ and $V \in \mathbb{R}^{p \times k}$ products $W \in \mathbb{R}^{mn \times k}$ so that $W_{1:1:1:k} = U_{1:k} \cup_{1:k} \cup_{1:k} = \bigcup_{i=1}^{k} \bigcup$

> VI - IN = EU I - Sienin mini



Identities with Kronecker and Khatri-Rao Products

Matrix multiplication is distributive over the Kronecker product

 $\mathcal{O}(\mathcal{A}^{3})$ $(A \otimes B)(C \otimes D) = (AC) \otimes (C \otimes D)$) (n4)

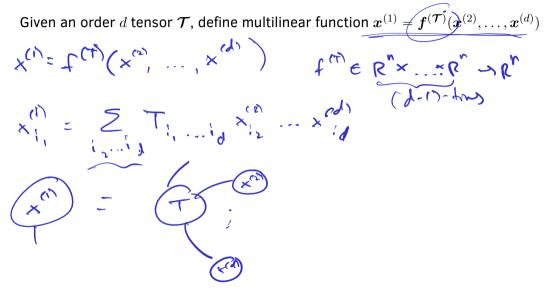
For the Khatri-Rao product a similar distributive identity is

 $(A \cap B)^{T}(C \cap D) = (A^{T}C) * (B^{T}D)$ M=AC

5 aon Mr coed De = When

(Zaiveire) (Zbivaire) = (ATC) ~ (BTD)

Multilinear Tensor Operations



Batched Multilinear Operations

The multilinear map $f^{(\mathcal{T})}$ is frequently used in tensor computations

A⁽ⁿ⁾ = T₍₁₎ (A⁽¹⁾O. QA⁽ⁿ⁻¹⁾ O A⁽ⁿ⁺¹⁾ O ... O A⁽ⁿ⁾ $a_{ir} = T_{ijk} b_{jr} c_{kr}$ $A = T_{in} (B \otimes C)$ $O = \overline{O}$ $\begin{bmatrix} a^{(i)} & \dots & a^{(R)} \end{bmatrix} = \begin{bmatrix} f_{1}(b^{(i)}, c^{(i)}) & \dots & f_{n}(b^{(R)}, c^{(n)}) \\ & \dots & & & \\ & & & & \\ & & & &$

To tensor -bines - motrix chain $Z = T \times_{i} A^{(i)} \times_{i} t^{(i)} \cdots \times_{d-1} t^{(d,i)} A^{(i)} = \begin{bmatrix} a^{(i,i)} & a^{(i)} \\ a^{(i)} & a^{(i)$

Tensor Norm and Conditioning of Multilinear Functions

We can define elementwise and operator norms for a tensor $\boldsymbol{\mathcal{T}}$

Conditioning of Multilinear Functions

Evaluation of the multilinear map is typically ill-posed for worst case inputs

Well-conditioned Tensors

For equidimensional tensors (all modes of same size), some small ideally conditioned tensors exist

Ill-conditioned Tensors

For
$$n \notin \{2, 4, 8\}$$
 given any $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$, $\inf_{x, y \in \mathbb{S}^{n-1}} \| f^{(\mathcal{T})}(x, y) \|_2 = 0$

CP Decomposition

• The *canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition* expresses an order *d* tensor in terms of *d* factor matrices

CP Decomposition Basics

The CP decomposition is useful in a variety of contexts

Basic properties and methods

Tucker Decomposition

The Tucker decomposition expresses an order d tensor via a smaller order d core tensor and d factor matrices

Tucker Decomposition Basics

The Tucker decomposition is used in many of the same contexts as CP

Basic properties and methods

Tensor Train Decomposition

The tensor train decomposition expresses an order d tensor as a chain of products of order 2 or order 3 tensors

Tensor Train Decomposition Basics

Tensor train has applications in quantum simulation and in numerical PDEs

Basic properties and methods

Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all dimensions equal to n and all decomposition ranks equal to R

decomposition	СР	Tucker	tensor train
size			
uniqueness			
orthogonalizability			
exact decomposition			
approximation			
typical method			

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda = ({m F}^{(A)}, {m F}^{(C)}, {m F}^{(C)})$ computes

$$\boldsymbol{c} = \boldsymbol{F}^{(C)}[(\boldsymbol{F}^{(A)T}\boldsymbol{a}) \odot (\boldsymbol{F}^{(B)T}\boldsymbol{b})],$$

where a and b are inputs and \odot is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations

• A bilinear algorithm corresponds to a CP tensor decomposition

• For multiplication of $n \times n$ matrices, we can define a *matrix multiplication tensor* and consider algorithms with various bilinear rank

Strassen's Algorithm

Strassen's algorithm
$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

 $M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$
 $M_2 = (A_{21} + A_{22}) \cdot B_{11}$
 $M_3 = A_{11} \cdot (B_{12} - B_{22})$
 $M_4 = A_{22} \cdot (B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12}) \cdot B_{22}$
 $M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$

By performing the nested calls recursively, Strassen's algorithm achieves cost,