CS 598 EVS: Tensor Computations

Basics of Tensor Computations

Edgar Solomonik

University of Illinois at Urbana-Champaign

Tensors

A tensor is a collection of elements

A few examples of tensors are

Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements

Matrices and Tensors as Operators and Multilinear Forms

- What is a matrix?
- What is a tensor?

Tensor Transposition

For tensors of order $\geqslant 3$, there is more than one way to transpose modes

Tensor Symmetry

We say a tensor is symmetric if $\forall j, k \in\{1, \ldots, d\}$

A tensor is antisymmetric (skew-symmetric) if $\forall j, k \in\{1, \ldots, d\}$

A tensor is partially-symmetric if such index interchanges are restricted to be within disjoint subsets of $\{1, \ldots, d\}$, e.g., if the subsets for $d=4$ and $\{1,2\}$ and $\{3,4\}$, then

Tensor Sparsity

We say a tensor \mathcal{T} is diagonal if for some \boldsymbol{v}, If most of the tensor entries are
zeros, the tensor is sparse

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps $f: V_{f} \rightarrow W_{f}$ and $g: V_{g} \rightarrow W_{g}$

Tensors can be used to represent multilinear maps and have a corresponding definition for a tensor product

The Kronecker product between two matrices $\boldsymbol{A} \in \mathbb{R}^{m_{1} \times m_{2}}, \boldsymbol{B} \in \mathbb{R}^{n_{1} \times n_{2}}$

Tensor Contractions

A tensor contraction multiplies elements of two tensors and computes partial sums to produce a third, in a fashion expressible by pairing up modes of different tensors, defining einsum (term stems from Einstein's summation convention)

tensor contraction	einsum	diagram
inner product		
outer product		
pointwise product		
Hadamard product		
matrix multiplication		
batched mat.-mul.		
tensor times matrix		

The terms 'contraction' and 'einsum' are also often used when more than two operands are involved

General Tensor Contractions

Given tensor \mathcal{U} of order $s+v$ and \mathcal{V} of order $v+t$, a tensor contraction summing over v modes can be written as

Unfolding the tensors reduces the tensor contraction to matrix multiplication

Properties of Einsums

Given an elementwise expression containing a product of tensors, the operands commute

A contraction can be succinctly described by a tensor diagram

Matrix-style Notation for Tensor Contractions

The tensor times matrix contraction along the m th mode of \mathcal{U} to produce \mathcal{V} is expressed as follows

The Khatri-Rao product of two matrices $\boldsymbol{U} \in \mathbb{R}^{m \times k}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times k}$ products $\boldsymbol{W} \in \mathbb{R}^{m n \times k}$ so that

Identities with Kronecker and Khatri-Rao Products

- Matrix multiplication is distributive over the Kronecker product
- For the Khatri-Rao product a similar distributive identity is

Multilinear Tensor Operations
order N
Given an order d tensor \mathcal{T}, define multilinear function $\boldsymbol{x}^{(1)}=\boldsymbol{f}^{\stackrel{(1)}{(\mathcal{T})}}\left(\boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(d)}\right)$

$$
\begin{aligned}
x_{i}= & \sum_{j k} t_{i j k} y_{j j} z^{2} \\
x= & f^{(+)}\left(y_{1},\right)^{\prime} \\
& f^{(t)}: R^{n} \times k^{n} \rightarrow R^{n}
\end{aligned}
$$

\}

Batched Multilinear Operations
The multilinear map $f^{(\mathcal{T})}$ is frequently used in tensor computations

Tensor Norm and Conditioning of Multilinear Functions
We can define elementwise and operator norms for a tensor \mathcal{T}

$$
\begin{aligned}
& \max _{x \in S^{n-1}}\left\|A_{x}\right\|_{2}= \underbrace{\max _{x, y \in S^{n-1}} y^{+} A x}_{\text {field of vales }} \leq \underbrace{\|y\|}_{1}\left\|A_{x}\right\| \\
& \text { if } y=A_{x}\left\|A_{x}\right\|_{2} \\
& \text { Hey } \\
& y^{+} A_{x}=\underbrace{\left\|A_{x}\right\|_{2}}_{x^{\top} A^{\top} A x} \\
&=\left\|A_{x}\right\|_{2}
\end{aligned}
$$

if $G_{Q}^{\infty} \neq \alpha \theta$

$$
\exists z^{\prime} \in s^{n-1} \text { st }
$$

unless $T_{Q}^{Q}=\alpha, Q_{1}$
and
it camus be

$$
\text { dol } \sum_{i=3} d_{i j} x_{i} y_{j} z_{k}
$$

Conditioning of Multilinear Functions
Evaluation of the multilinear map is typically ill-posed for worst case inputs

$$
\begin{aligned}
& f^{(1, y)}(x)=M_{x} \\
& \left\|S_{f(t)}\right\|_{x 2}=\|M\|_{2} \leq\|T\|_{2}
\end{aligned}
$$

Well-conditioned Tensors
For equidimensional tensors (all modes of same size), some small ideally conditioned tensors exist

$$
\begin{aligned}
& U f^{(T)}(x, y) U_{2} \frac{x, y \in s^{n-1}}{=1} \quad f^{(+)}: S^{n-1} \times S^{n-1} \rightarrow S^{n-1} \\
& \left.\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]^{[-1} 1\right] \\
& \longrightarrow_{\text {min }} \inf _{x, g \operatorname{cs}^{n-1}} \operatorname{fin}^{(n)}(x, y) \|_{2}
\end{aligned}
$$

Ill-conditioned Tensors
For $n \notin\{2,4,8\}$ given any $\mathcal{T} \in \mathbb{R}^{n \times n \times n}, \inf _{\boldsymbol{x}, \boldsymbol{y} \in \mathbb{S}^{n-1}}\left\|\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x}, \boldsymbol{y})\right\|_{2}=0$

$$
\exists x, y \quad f(T)(x, y)=\left[\begin{array}{l}
0 \\
\vdots \\
j
\end{array}\right] \quad \begin{aligned}
& \text { if } \| f^{(t)}\left(x, y\left\|_{2}^{2}\right\| x\left\|_{2}^{2}\right\| y \|_{2}^{2}\right. \\
& \forall x, y k(t)=1
\end{aligned}
$$

Hurwitz problem seels quadratie fourms $z_{1}, \ldots \quad z_{n}, s .1$.

$$
\begin{aligned}
\text { e.g. } \quad z_{1}= & 2 x_{1} y_{2} \\
& +3 x_{1},
\end{aligned}
$$ $+3 x_{4} y_{1}$

$$
\begin{aligned}
& \begin{array}{l}
\exists x_{i} y \\
\underbrace{}_{i}=\sum_{j<} t_{i j k} x_{j} y_{k}
\end{array} \underbrace{\left(y_{1}+\ldots+x_{n}^{2}\right)}\left(y_{1}^{2}+\ldots y_{n}^{2}\right)
\end{aligned}=\left(z_{1}^{2}+\ldots+z_{n}^{2}\right),
$$

Algebras as Tensors
A third order tensor can be used to describe an algebra The Hurwitz problem also
An algebra is a vector space (R^{n}) equipped wt a blitius funcluen $f: R^{n}+R^{n} \rightarrow R^{n}$
 implies a result for division algebras, for which the bilinear product is invertible

CP Decomposition

- The canonical polyadic or CANDECOMP/PARAFAC(CP))decomposition expresses an order d tensor in terms of d factor matrices

$+$

CP Decomposition Basics

- The CP decomposition is useful in a variety of contexts - exact low ranis CPD
- reduced-size approsinctuer of $T, \min _{A, B, C}\left\|T-\left[A_{1}, B, C\right]\right\|$
deduce $\lambda \cdot R=O(1)$
x Nus $\cdot R=O_{p s}(\lg (n)) \quad R \leq n^{d-1}$ or. Basic properties and methods
- $C P D$ is unique if $A_{2} R_{2} C$ are fill rand and $R \leqslant 3 n / 2$
- Herat $n^{d-1} \sim R \leq n$

$$
\widetilde{T}_{i j l}=\sum_{r=1}^{R} \frac{d_{i n} l}{a_{i r} b_{j r} c_{r}}
$$

$\tilde{T}_{q 0 \%}=\underbrace{\sum_{r i 1}^{R} \alpha_{r} a_{i r} b_{j r} b_{r r}}_{\text {nniqueren }}$
'typical rank', for $n=2,3$ and 4 wee dyrivel rus

$$
\begin{aligned}
T \approx \mu A & \mu^{+} \mu A
\end{aligned}=\underbrace{\mu^{+} T}
$$

Tucker Decomposition

- The Tucker decomposition expresses an order d tensor via a smaller order d core tensor and d factor matrices

$$
\begin{aligned}
& t_{0}=\sum_{\text {arr }} 2_{\text {par }} u_{i f} v_{j \underline{1}} w_{b I} \\
& U^{\top} U=I \quad U^{\top} U=I \quad W^{\top} W=I \\
& \text { n,v,w arthogoned }
\end{aligned}
$$

Tucker Decomposition Basics

- The Tucker decomposition is used in many of the same contexts as CP

$$
R \leq s
$$

- Basic properties and methods

Tensor Train Decomposition

- The tensor train decomposition expresses an order d tensor as a chain of products of order 2 or order 3 tensors

Tensor Train Decomposition Basics

- Tensor train has applications in quantum simulation and in numerical PDEs
- Basic properties and methods

Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all dimensions equal to n and all decomposition ranks equal to R

decomposition	CP	Tucker	tensor train
size			
uniqueness			
orthogonalizability			
exact decomposition			
approximation			

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda=\left(\boldsymbol{F}^{(A)}, \boldsymbol{F}^{(B)}, \boldsymbol{F}^{(C)}\right)$ computes

$$
\boldsymbol{c}=\boldsymbol{F}^{(C)}\left[\left(\boldsymbol{F}^{(A) T} \boldsymbol{a}\right) \odot\left(\boldsymbol{F}^{(B) T} \boldsymbol{b}\right)\right],
$$

where \boldsymbol{a} and \boldsymbol{b} are inputs and \odot is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations

- A bilinear algorithm corresponds to a CP tensor decomposition
- For multiplication of $n \times n$ matrices, we can define a matrix multiplication tensor and consider algorithms with various bilinear rank

Strassen's Algorithm

Strassen's algorithm $\left[\begin{array}{cc}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22}\end{array}\right] \cdot\left[\begin{array}{ll}\boldsymbol{B}_{11} & \boldsymbol{B}_{12} \\ \boldsymbol{B}_{21} & \boldsymbol{B}_{22}\end{array}\right]$

$$
\begin{array}{ll}
\boldsymbol{M}_{1}=\left(\boldsymbol{A}_{11}+\boldsymbol{A}_{22}\right) \cdot\left(\boldsymbol{B}_{11}+\boldsymbol{B}_{22}\right) & \boldsymbol{C}_{11}=\boldsymbol{M}_{1}+\boldsymbol{M}_{4}-\boldsymbol{M}_{5}+\boldsymbol{M}_{7} \\
\boldsymbol{M}_{2}=\left(\boldsymbol{A}_{21}+\boldsymbol{A}_{22}\right) \cdot \boldsymbol{B}_{11} & \boldsymbol{C}_{21}=\boldsymbol{M}_{2}+\boldsymbol{M}_{4} \\
\boldsymbol{M}_{3}=\boldsymbol{A}_{11} \cdot\left(\boldsymbol{B}_{12}-\boldsymbol{B}_{22}\right) & \boldsymbol{C}_{12}=\boldsymbol{M}_{3}+\boldsymbol{M}_{5} \\
\boldsymbol{M}_{4}=\boldsymbol{A}_{22} \cdot\left(\boldsymbol{B}_{21}-\boldsymbol{B}_{11}\right) & \boldsymbol{C}_{22}=\boldsymbol{M}_{1}-\boldsymbol{M}_{2}+\boldsymbol{M}_{3}+\boldsymbol{M}_{6} \\
\boldsymbol{M}_{5}=\left(\boldsymbol{A}_{11}+\boldsymbol{A}_{12}\right) \cdot \boldsymbol{B}_{22} & \\
\boldsymbol{M}_{6}=\left(\boldsymbol{A}_{21}-\boldsymbol{A}_{11}\right) \cdot\left(\boldsymbol{B}_{11}+\boldsymbol{B}_{12}\right) & \\
\boldsymbol{M}_{7}=\left(\boldsymbol{A}_{12}-\boldsymbol{A}_{22}\right) \cdot\left(\boldsymbol{B}_{21}+\boldsymbol{B}_{22}\right) &
\end{array}
$$

By performing the nested calls recursively, Strassen's algorithm achieves cost,

