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Tensors
A tensor is a collection of elements

A few examples of tensors are



Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements



Matrices and Tensors as Operators and Multilinear Forms

» What is a matrix?

» What is a tensor?



Tensor Transposition

For tensors of order > 3, there is more than one way to transpose modes



Tensor Symmetry

We say a tensor is symmetric if Vj, ke {1,...,d}

A tensor is antisymmetric (skew-symmetric) if Vj, k € {1,...,d}

A tensor is partially-symmetric if such index interchanges are restricted to be
within disjoint subsets of {1,...,d}, e.g., if the subsets for d = 4 and {1, 2} and
{3,4}, then



Tensor Sparsity
We say a tensor T is diagonal if for some v, If most of the tensor entries are

zeros, the tensor is sparse



Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps f : V; — W, and
g:Vyg =W,

Tensors can be used to represent multilinear maps and have a corresponding
definition for a tensor product

The Kronecker product between two matrices A € R™1*™2 B ¢ R"1*"2



Tensor Contractions

A tensor contraction multiplies elements of two tensors and computes partial
sums to produce a third, in a fashion expressible by pairing up modes of different
tensors, defining einsum (term stems from Einstein’s summation convention)

tensor contraction

einsum

diagram

inner product

outer product

pointwise product

Hadamard product

matrix multiplication

batched mat.-mul.

tensor times matrix

The terms ‘contraction’ and ‘einsum’ are also often used when more than two

operands are involved



General Tensor Contractions
Given tensor U of order s + v and V of order v + t, a tensor contraction summing
over v modes can be written as

Unfolding the tensors reduces the tensor contraction to matrix multiplication



Properties of Einsums
Given an elementwise expression containing a product of tensors, the operands
commute

A contraction can be succinctly described by a tensor diagram



Matrix-style Notation for Tensor Contractions
The tensor times matrix contraction along the mth mode of U to produce V is
expressed as follows

The Khatri-Rao product of two matrices U € R™** and V e R™** products
W e R™*k 50 that



Identities with Kronecker and Khatri-Rao Products

» Matrix multiplication is distributive over the Kronecker product

» For the Khatri-Rao product a similar distributive identity is



Multilinear Tensor Operations

Given an order d tensor T, define multilinear function () = f(M(2®) ... z@)



Batched Multilinear Operations

The multilinear map f(7) is frequently used in tensor computations



Tensor Norm and Conditioning of Multilinear Functions

We can define elementwise and operator norms for a tensor T~



Conditioning of Multilinear Functions

Evaluation of the multilinear map is typically ill-posed for worst case inputs



Well-conditioned Tensors

For equidimensional tensors (all modes of same size), some small ideally
conditioned tensors exist



Ill-conditioned Tensors

For n ¢ {2,4,8} given any T € R™™™ inf_ o1 | FT)(z,y)2 = 0



Algebras as Tensors
A third order tensor can be used to describe an algebra The Hurwitz problem also

implies a result for division algebras, for which the bilinear product is invertible
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CP Decomposition

» The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition
expresses an order d tensor in terms of d factor matrices
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CP Decomposition Basics

» The CP decomposition is useful in a variety of contexts
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» Basic properties and methods
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Tucker Decomposition

» The Tucker decomposition expresses an order d tensor via a smaller order d
core tensor and d factor matrices
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Tucker Decomposition Basics

» The Tucker decomposition is used in many of the same contexts as CP
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Tensor Train Decomposition

» The tensor train decomposition expresses an order d tensor as a chain of
products of order 2 or order 3 tensors
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Tensor Train Decomposition Basics

» Tensor train has applications in quantum simulation and in numerical PDEs
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We can compare the aforementioned decomposition for an order d tensor with all
dimensions equal tOﬁ_and all decomposition ranks equal to R ————(’e'_'
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