CS 598 EVS: Tensor Computations

Bilinear Algorithms
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Bilinear Problems

» A number of basic numerical problems can be thought of as bilinear
functions associated with particular order 3 tensors
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» These problems admit nontrivial fast bilinear algorithms, which correspond
to low-rank CP decompositions of the tensors
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Bilinear Problems

» A bilinear problem for any inputs a € R™ and b € R¥ computes ce R™ as
defined by a tensor 7~ e R™>*nxk
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» Variants of discrete convolutions (linear convolution, correlation, cyclic

convolution) provide simple examples of T~ »—T—/‘——"
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Bilinear Algorithms
A bilinear algorithm (V. Pan, 1984) A = (F(Y), (B) F(C)) computes where a
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and b are inputs and = is the Hadamard (pointwise) product.
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Bilinear Algorithms as Tensor Factorizations
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» A bilinear algorithm corresponds toaCP tensor decomposition __CZ:
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» For multiplication of n x n matrices, we can define a matrix multiplication
tensor and consider algorithms with various bilinear rank
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Strassen’s Algorithm

S
) : Ci1 Ci A1 Ap| |Bii B
Strassen’s algorithm [C21 C22] = [le A22] . [le BQQ]
(A11 + Asz2) - (B11 + Ba2) Cn =@ My — Ms + M~
= (A2 + A22)—'_’Bll Co = M, + M,y
Ay - (B2 ——322) Ci2 = Ms + M;
4= A22jB21 — B11) —6'/22 = M; — M + M3 + Ms
M5 = (Ai1 + A12) - B — - l
Ms = (Ag1 — A11@B11 + Bi2) (_ ! . - /'1
M, = (A12 - A222_"(321 + 322) ’F 4 ’

By performing the nested calls recursively, Strassen’s algorithm achieves cost,
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Fast Bilinear Algorithms for Convolution

» Linear convolution corresponds to polynomial multiplication
\
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» The Toom- Cookc

qutlon algorlthm computes the coefﬂuents of p-q by
computmg p-q)(x;) forie {1 ,n+ k — 1} and interpolates

AJAZ,«U. w-( ’\o(j \Jew dusimor e s ber'®

B ﬂ,k—‘wu I U},\Qx\ = X?h

QU ay s Pale = &b







BN







Toom-Cook Convolution and the Fourier Transform
» Vandermonde matrices are ill-conditioned with real nodes, but can be
perfectly conditioned with complex nodes
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» The fast Fourier transform (FFT) can be used to perform products with the
DFT matrix in O(nlogn) time

- W
D(h\ - \}(r\\ t:lA" < D(mw (h\

(A

Du\i 33_& u\\ Dm\ ‘s Sca P T S P P



Dt,,‘f\

v LT[0

D peT

0 e

\,) L D(A“
R
b;c %w(h\ 'B
((;i:\'*
-2 2w
R S Sone

0



Cyclic Convolution via DFT
» For linear convolution D *+-1) js used, for cyclic convolution D™ sliffices
DY)
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» The DFT also arises in the eigendecomposition of a circulant matrix
> lgéndecomposition of ¢
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Winograd’s Algorithm for Convolution

» The DFT/FFT requires complex arithmetic, motivating alternatives such as
the more general Winograd family of algorithms



Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm can be written as a bilinear algorithm by
defining appropriate linear transformations



Algebraic Formulation of Winograd’s Algorithm for Convolution

> Given an operator X, 4, € C4€9(m)*(d+1) to compute coefficients of p = p
(mod m), we can efficiently compute



Algebraic Formulation of Winograd’s Algorithm for Convolution

» Winograd’s convolution algorithm effectively merges smaller bilinear
algorithms for linear convolution



Algebraic Formulation of Winograd’s Algorithm for Convolution

» A missing piece of the above formulation is how to realize Bézout’s identity
to compute N@ and e®



Nested Bilinear Algorithms for Convolution
» 2D convolution is equivalent to nested 1D convolution

» 1D convolution can be reduced to 2D convolution with some work

» For more details on the above derivations and a broader survey of
convolution algorithms, see https://arxiv.org/abs/1910.13367



Symmetric Tensor Contractions

» Bilinear algorithms can also be used to accelerate tensor contractions for
tensors with symmetry

» Bilinear algorithms for symmetric tensor contractions exist with lower rank
than their nonsymmetric counterparts



Symmetric Matrix Vector Product

» Consider computing ¢ = Ab with A = AT



Partially-Symmetric Tensor Times Matrix (TTM)

» Can use symmetric mat-vec algorithm to accelerate TTM with partially
symmetric tensor from 2n* operations to (3/2)n* + O(n?)



Computing Symmetric Matrices
» Output symmetry can also be used to reduced cost, for example when
computing a symmetrized outer product C = ab” + ba”

» To symmetrize product of two symmetric matrices, can compute
anticommutator, C = AB + BA



General Symmetric Tensor Contractions
» We can now consider the cost of a symmetrized contraction over v indices of
symmetric tensors A (of order s + v) and B (of order v + t)

» Such tensor contractions can be done using
ns T /(s +t 4+ v)! + O(n* =1 products



