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CP Decomposition Rank
§ The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition
expresses an order d tensor in terms of d factor matrices





Tensor Rank Properties

§ Tensor rank does not satisfy many of the properties of matrix rank





Typical Rank and Generic Rank

§ When there is only a single typical tensor rank, it is the generic rank



Uniqueness Su�cient Conditions

§ Unlike the low-rank matrix case, the CP decomposition can be unique





Uniqueness Necessary Conditions

§ Necessary conditions for uniqueness of the CP decomposition also exist



Degeneracy
§ The best rank-k approximation may not exist, a problem known as
degeneracy of a tensor



Border Rank

§ Degeneracy motivates an approximate notion of rank, namely border rank



Approximation by CP Decomposition

§ Approximation via CP decomposition is a nonlinear optimization problem



Alternating Least Squares Algorithm
§ The standard approach for finding an approximate or exact CP
decomposition of a tensor is the alternating least squares (ALS) algorithm







Alternating Least Squares for Tucker Decomposition
§ For Tucker decomposition, an analogous optimization procedure to ALS is
referred to as high-order orthogonal iteration (HOOI)



Dimension Trees for ALS

§ The cost of ALS can be reduced by amortizing computation common terms



Fast Residual Norm Calculation
§ Calculating the norm of the residual has cost 2dsdR, but can be done more
cheaply within ALS



Pairwise Perturbation Algorithm
§ A route to further reducing the cost of ALS is to perform it approximately via
pairwise perturbation



Pairwise Perturbation Second Order Correction
§ When approximating a tensor using CP, the partially converged CP factors
can sometimes be used in place of the tensor to accelerate cost



Approximate CP ALS using Random Sampling
§ Another approach to approximating ALS is to sample the least-squares
equations1

1C. Battaglino, G. Ballard, T. G. Kolda, 2018



Gauss-Newton Algorithm
§ ALS generally achieves linear convergence, while Newton-based methods
can converge quadratically



Gauss-Newton for CP Decomposition

§ CP decomposition for order d “ 3 tensors (d ą 3 is similar) minimizes



Gauss-Newton for CP Decomposition
§ A step of Gauss-Newton requires solving a linear system with H

u = []
for q in range(d):

u.append(zeros((n,R)))
for p in range(d):

if q == p:
u[q] += einsum("rz,kz->kr",G[q,p],v[p])

else:
u[q] += einsum("kz,lr,rz,lz->kr", \

U[q],U[p],G[q,p],v[p])



Tensor Completion
§ The tensor completion problem seeks to build a model (e.g., CP
decomposition) for a partially-observed tensor

§ The problem was partially popularized by the Netflix prize collaborative
filtering problem



CP Tensor Completion Gradient and Hessian
§ The gradient of the tensor completion objective function is sparsified
according to the set of observed entries

§ ALS for tensor decomposition solves quadratic optimization problem for
each row of each factor matrix, in the completion case, Newton’s method on
these subproblems yields di�erent Hessians



Methods for CP Tensor Completion
§ ALS for tensor completion with CP decomposition incurs additional cost

§ Alternative methods for tensor completion include coordinate descent and
stochastic gradient descent



Coordinate Descent for CP Tensor Completion

§ Coordinate descent avoids the need to solve linear systems of equations



Sparse Tensor Contractions
§ Tensor completion and sparse tensor decomposition require operations on
sparse tensors

§ Sparse tensor contractions often correspond to products of hypersparse
matrices, i.e., matrices with mostly zero rows



Sparse Tensor Formats
§ The overhead of transposition, and non-standard nature of the arising
sparse matrix products, motivates sparse data structures for tensors that
are suitable for tensor contractions of interest

§ The compressed sparse fiber (CSF) format provides an e�ective
representation for sparse tensors



Operations in Compressed Format

§ CSF permits e�cient execution of important sparse tensor kernels
§ Analogous to CSR format, which enables e�cient implementation of the sparse
matrix vector product

§ where row[i] stores a list of column indices and nonzeros in the ith row of A

for i in range(n):
for (a_ij ,j) in row[i]:

y[i] += a_ij * x[j]

§ In CSF format, a multilinear function evaluation f pT qpx,yq “ Tp1qpx d yq can
be implemented as

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for (k,t_ijk) in T_ij:
z[i] += t_ijk * x[j] * y[k]



MTTKRP in Compressed Format
§ MTTKRP and CSF pose additional implementation opportunities and
challenges

§ MTTKRP uir “ ř
j,k tijkvjrwkr can be implemented by adding a loop over r to

our code for f pT q, but would then require 3mr operations if m is the number of
nonzeros in T , can reduce to 2mr by amortization

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for r in range(R):
f_ij = 0
for (k,t_ijk) in T_ij:

f_ij += t_ijk * w[k,r]
u[i,r] = f_ij * v[j,r]

§ However, this amortization is harder (requires storage or iteration overheads) if
the index i is a leaf node in the CSF tree

§ Similar challenges in achieving good reuse and obtaining good arithmetic
intensity arise in implementation of other kernels, such as TTMc



All-at-once Contraction

§ When working with sparse tensors, it is often more e�cient to contract
multiple operands in an all-at-once fashion



Constrained Tensor Decomposition

§ Many applications of tensor decomposition in data science, feature
additional structure, which can be enforced by constraints



Nonnegative Tensor Factorization

§ Nonnegative tensor factorization (NTF), such as CP decomposition with
T ě 0 and U ,V ,W ě 0 are widespread and a few classes of algorithms
have been developed



Nonnegative Matrix Factorization

§ NTF algorithms with alternating updates have a close correspondence with
alternating update algorithms for Nonnegative matrix factorization (NMF)



Coordinate Descent for NMF and NTF

§ Coordinate descent gives optimal closed-form updates for variables in NMF
and NTF



Generalized Tensor Decomposition
§ Aside from addition of constraints, the objective function may be modified by
using di�erent elementwise loss functions

§ Some loss function admit ALS-like algorithms, while others may require
gradient-based optimization


