import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as pt
Define a function and its derivative:
c = 20*2*np.pi
def f(x):
return np.sin(c*x)
def df(x):
return c*np.cos(c*x)
n = 2000
x = np.linspace(0, 1, n, endpoint=False).astype(np.float32)
pt.plot(x, f(x))
Now compute the relative $l^\infty$ norm of the error in the finite differences, for a bunch of mesh sizes:
h_values = []
err_values = []
for n_exp in range(5, 24):
n = 2**n_exp
h = (1/n)
x = np.linspace(0, 1, n, endpoint=False).astype(np.float32)
fx = f(x)
dfx = df(x)
dfx_num = (np.roll(fx, -1) - np.roll(fx, 1)) / (2*h)
err = np.max(np.abs((dfx - dfx_num))) / np.max(np.abs(fx))
print(h, err)
h_values.append(h)
err_values.append(err)
pt.rc("font", size=16)
pt.title(r"Single precision FD error on $\sin(20\cdot 2\pi)$")
pt.xlabel(r"$h$")
pt.ylabel(r"Rel. Error")
pt.loglog(h_values, err_values)