TODAY
Fast Mulhpole
Direct solving
·
PDE

Using Multipole-to-Local

O(N) Form impoles

Mipoles in pw.

O(N) Cocals down wond

o(N) Eval local

O(N) Take core of interacting

(Figure credit: G. Martinsson, Boulder)

Come up with an algorithm that computes the interaction in the figure.

Cocals down ward;

for level = 0... L

for each box on level L:

Translate local from glorious 27

Translate local from pour

Using Multipole-to-Local

(Figure credit: G. Martinsson, Boulder)

Assuming we retain information from the previous level, how can we obtain a valid local expansion on the target box?

Define 'Interaction List'

For a box b, the interaction list I_b consists of all boxes b' so that

The Fast Multipole Method ('FMM')

Upward pass

- 1. Build tree
- 2. Compute interaction lists
- 3. Compute lowest-level multipoles from sources
- 4. Loop over levels $\ell = L 1, \dots, 2$:
 - (a) Compute multipoles at level ℓ by mp \rightarrow mp

Downward pass

- 1. Loop over levels $\ell = 2, 3, \dots, L-1$:
 - (a) Loop over boxes b on level ℓ :
 - i. Add contrib from I_b to local expansion by mp \rightarrow loc
 - ii. Add contrib from parent to local exp by $loc \rightarrow loc$
- 2. Evaluate local expansion and direct contrib from 9 neighbors.

Overall algorithm: Now O(N) complexity.

Note: L levels, numbered $0, \dots, L-1$. Loop indices above *inclusive*.

What about adaptivity?

Figure credit: Carrier et al. ('88)

What changes?

What about adaptivity?

Figure credit: Carrier et al. ('88)

Make a list of cases:

What about solving?

Likely computational goal: Solve a linear system Ax = b. How do our methods help with that?

A Matrix View of Low-Rank Interaction

Only parts of the matrix are low-rank! What does this look like from a matrix perspective?

Block-separable matrices

How do we represent the low-rank structure of a matrix like this?

$$A = \left(egin{array}{cccc} D_1 & A_{12} & A_{13} & A_{14} \ A_{21} & D_2 & A_{23} & A_{24} \ A_{31} & A_{32} & D_3 & A_{34} \ A_{41} & A_{42} & A_{43} & D_4 \end{array}
ight)$$

where A_{ii} has low-rank structure?

Block-Separable Matrices

A block-separable matrix looks like this:

$$A = \begin{pmatrix} D_1 & P_1 \tilde{A}_{12} \Pi_2 & P_1 \tilde{A}_{13} \Pi_3 & P_1 \tilde{A}_{14} \Pi_4 \\ P_2 \tilde{A}_{21} \Pi_1 & D_2 & P_2 \tilde{A}_{23} \Pi_3 & P_2 \tilde{A}_{24} \Pi_4 \\ P_3 \tilde{A}_{31} \Pi_1 & P_3 \tilde{A}_{32} \Pi_2 & D_3 & P_3 \tilde{A}_{34} \Pi_4 \\ P_4 \tilde{A}_{41} \Pi_1 & P_4 \tilde{A}_{42} \Pi_2 & P_4 \tilde{A}_{43} \Pi_3 & D_4 \end{pmatrix}$$

Here:

- \tilde{A}_{ij} smaller than A_{ij}
- D_i has full rank (not necessarily diagonal)
- P_i shared for entire row
- Π_i shared for entire column

Q: Why is it called that?