




Fixed-order vs Spectral

Fixed-order Spectral
Number of DoFs n
∼
Number of ‘elements’

Error ∼ 1

np

Examples?
• Piecewise Polynomials

Number of DoFs n
∼
Number of modes resolved

Error ∼ 1

C n

Examples?
• Global Fourier
• Global Orth. Polyno-
mials

What assumptions are buried in each of these?

What should the DoFs be?



What’s the difficulty with purely modal discretizations?



Vandermonde Matrices




x00 x10 · · · xn0
x01 x11 · · · xn1
...

... . . . ...
x0n x1n · · · xnn







a0
a1
...
an


 = ?



Generalized Vandermonde Matrices




φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
... . . . ...

φ0(xn) φ1(xn) · · · φn(xn)







a0
a1
...
an


 = ?



Generalized Vandermonde Matrices




φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
... . . . ...

φ0(xn) φ1(xn) · · · φn(xn)


MODALCOEFFS = NODALCOEFFS

Node placement?

Vandermonde conditioning?

What about multiple dimensions?



Common Operations

(Generalized) Vandermonde matrices simplify common operations:

• Modal ↔ Nodal (“Global interpolation”)

– Filtering

– Up-/Oversampling

• Point interpolation (Hint: solve using V T )

• Differentiation

• Indefinite Integration

• Inner product

• Definite integration



Unstructured Mesh

• Design a data structure to represent this

• Compute normal vectors

• Compute area

• Compute integral of a function

• How is the function represented?



9.2 Integral Equation Discretizations



Integral Equation Discretizations: Overview

φ(x)−
�

Γ

K (x , y)φ(y)dy = f (y)

Nyström Projection

• Approximate integral
by quadrature:�
Γ f (y)dy →�n
k=1 ωk f (yk)

• Evaluate quadrature’d
IE at quadrature nodes,
solve

• Consider residual:
R := φ− Aφ− f

• Pick projection Pn onto
finite-dimensional sub-
space
Pnφ :=

�n
k=1�φ, vk�wk

→ DOFs �φ, vk�
• Solve PnR = 0

• Equivalent to projection: Test IE with test functions

• Important in projection methods: subspace (e.g. of C (Γ))



Name some possible bases for projection?

Name some generic discrete projection bases.

Collocation and Nyström: the same?

Are projection methods implementable?



Nyström discretizations

Nyström consists of two distinct steps:

1. Approximate integral by quadrature:

ϕn(x)−
n�

k=1

ωkK (x , yk)ϕn(yk) = f (x) (1)

2. Evaluate quadrature’d IE at quadrature nodes, solve discrete system

ϕ
(n)
j −

n�

k=1

ωkK (xj , yk)ϕ
(n)
k = f (xj) (2)

with xj = yj and ϕ
(n)
j = ϕn(xj) = ϕn(yj)

Is version (1) solvable?

What’s special about (2)?



Solution density also only known at point values. But: can get approximate con-
tinuous density. How?

Assuming the IE comes from a BVP. Do we also only get the BVP solution at
discrete points?

Does (1) ⇒ (2) hold?

Does (2) ⇒ (1) hold?

What good does that do us?

Does Nyström work for first-kind IEs?



Convergence for Nyström

Increase number of quadrature points n:

Get sequence (An)

Want An → A in some sense

What senses of convergence are there for sequences of functions fn?

What senses of convergence are there for sequences of operators An?

• for sequences of operators (An)?

Will we get norm convergence �An − A�∞ → 0 for Nyström?

Is functionwise convergence good enough?



Compactness-Based Convergence

X Banach space (think: of functions)

Theorem 19 (Not-quite-norm convergence [Kress LIE 2nd ed. Cor 10.4]) An : X → X
bounded linear operators,
functionwise convergent to A : X → X
Then convergence is uniform on compact subsets U ⊂ X, i.e.

sup
φ∈U

�Anφ− Aφ� → 0 (n → ∞)

How is this different from norm convergence?

Set A of operators A : X → X

Definition 15 (Collectively compact) A is called collectively compact if and
only if
for U ⊂ X bounded, A(U) is relatively compact.



What was relative compactness (=precompactness)?

Is each operator in the set A compact?

When is a sequence collectively compact?

Is the limit operator of such a sequence compact?

How can we use the two together?



Making use of Collective Compactness

X Banach space, An : X → X , (An) collectively compact, An → A functionwise.

Corollary 1 (Post-compact convergence [Kress LIE 2nd ed. Cor 10.8]) •
�(An − A)A� → 0

• �(An − A)An� → 0
(n → ∞)



Anselone’s Theorem

Assume:

(I − A)−1 exists, with A : X → X compact, (An) : X → X collectively compact and
An → A functionwise.

Theorem 20 (Nyström error estimate [Kress LIE 2nd ed. Thm 10.9]) For sufficiently
large n, (I − An) is invertible and

�φn − φ� ≤ C (�(An − A)φ�+ �fn − f �)

C =
1 + �(I − A)−1An�

1− �(I − A)−1(An − A)An�

I + (I − A)−1A =?

Show the theorem.



Nyström: specific to I+compact. Why?



Nyström: Collective Compactness

Assume �
|quad. weights for n points| ≤ C (independent of n) (3)

We’ve assumed collective compactness. Do we have that?

Also assumed functionwise uniform convergence, i.e. �Anφ−Aφ� → 0 for each φ.



9.3 Integral Equation Discretizations: Projection



Error Estimates for Projection

X Banach spaces, A : X → X injective, Pn : X → Xn

Theorem 21 (Céa’s Lemma [Kress LIE 2nd ed. Thm 13.6]) Convergence of the projection
method
⇔ There exist n0 and M such that for n ≥ n0

1. PnA : Xn → Xn are invertible,
2. �(PnA)

−1PnA� ≤ M.
In this case,

�φn − φ� ≤ (1 +M) inf
ψ∈Xn

�φ− ψ�

Proof? (skipped)

Core message of the theorem?



What goes into Pn?

Note domain of invertibility for PnA.

Domain/range of (PnA)
−1PnA?

Relationship to conditioning?

Relationship to second-kind?

Exact projection methods: hard. (Why?) What if we implement a perturbation?
(i.e. apply quadature instead of computing exact integrals?)



Decisions, Decisions: Nyström or Galerkin?

Quote Kress LIE, 2nd ed., p. 244 (Sec. 14.1):

[...] the Nyström method is generically stable whereas the collocation and Galerkin
methods may suffer from instabilities due to a poor choice of basis for the approx-
imating subspace.

Quote Kress LIE, 2nd ed., p. 244 (Sec. 13.5):

In principle, for the Galerkin method for equations of the second kind the same
remarks as for the collocation method apply. As long as numerical quadratures are
available, in general, the Galerkin method cannot compete in efficiency with the
Nyström method.
Compared with the collocation method, it is less efficient, since its matrix elements
require double integrations.

Need good quadratures to use Nyström.

Remaining advantage of Galerkin:


